Spectroscopic properties and energy transfer of Nd^3+/Ho^3+-doped Ga_2O_3-GeO_2 glass by codoping Yb^3+ ion
This study presented the luminescence properties of Nd^3+/Yb^3+/Ho^3+ dopant ions inside a host based on Ga_2O_3-GeO_2-Li_2O(GGL) glass. The measured differential scanning calorimetry result showed that GGL glass exhibited excellent stability against devitrification with ?T=135 oC. Obvious 543 and 6...
Saved in:
Published in | 中国稀土学报:英文版 Vol. 34; no. 4; pp. 368 - 373 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This study presented the luminescence properties of Nd^3+/Yb^3+/Ho^3+ dopant ions inside a host based on Ga_2O_3-GeO_2-Li_2O(GGL) glass. The measured differential scanning calorimetry result showed that GGL glass exhibited excellent stability against devitrification with ?T=135 oC. Obvious 543 and 657 nm emissions were observed in Nd^3+/Ho^3+-codoped sample. The incorporation of Yb^3+ into Nd^3+/Ho^3+-codoped glass system had resulted in enhanced upconversion emission intensity under the excitation of 808 nm and/or 980 nm laser diode(LD). The possible mechanisms and related discussions on this phenomenon were presented. It was noted that the presence of Yb^3+ yielded an enhancement about 7 and 11 times in the 543 and 657 nm emission intensities respectively under 808 nm excitation due to the energy transfer from Nd^3+ to Ho^3+ via Yb^3+ ion. Here Yb^3+ played a major role as a bridging ion. While enhanced 543 and 657 nm emission intensities under the excitation of 980 nm LD originated from the sensitization effect of Yb^3+. Our results showed that Nd^3+/Ho^3+/Yb^3+ triply doped GGL glass might be a promising candidate for the development of visible-laser materials. |
---|---|
Bibliography: | 11-2788/TF upconversion luminescence Nd^3+/Yb^3+/Ho^3+ Ga2O3-GeO2 glass energy transfer rare earths This study presented the luminescence properties of Nd^3+/Yb^3+/Ho^3+ dopant ions inside a host based on Ga_2O_3-GeO_2-Li_2O(GGL) glass. The measured differential scanning calorimetry result showed that GGL glass exhibited excellent stability against devitrification with ?T=135 oC. Obvious 543 and 657 nm emissions were observed in Nd^3+/Ho^3+-codoped sample. The incorporation of Yb^3+ into Nd^3+/Ho^3+-codoped glass system had resulted in enhanced upconversion emission intensity under the excitation of 808 nm and/or 980 nm laser diode(LD). The possible mechanisms and related discussions on this phenomenon were presented. It was noted that the presence of Yb^3+ yielded an enhancement about 7 and 11 times in the 543 and 657 nm emission intensities respectively under 808 nm excitation due to the energy transfer from Nd^3+ to Ho^3+ via Yb^3+ ion. Here Yb^3+ played a major role as a bridging ion. While enhanced 543 and 657 nm emission intensities under the excitation of 980 nm LD originated from the sensitization effect of Yb^3+. Our results showed that Nd^3+/Ho^3+/Yb^3+ triply doped GGL glass might be a promising candidate for the development of visible-laser materials. SHI Dongmei , ZHAO Yinggang (Department of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China) |
ISSN: | 1002-0721 2509-4963 |