Gust response analysis for a high-aspect ratio and wind tunnel tes wing

A theoretical nonlinear aeroelastic response analysis for a flexible high-aspect ratio wing excited by harmonic gust load is presented along with a companion wind tunnel test. A multidisci- plinary coupled numerical calculation is developed to simulate the flexible model wing undergoing gust load in...

Full description

Saved in:
Bibliographic Details
Published in中国航空学报:英文版 no. 1; pp. 91 - 103
Main Author Liu Yi Xie Changchuan Yang Chao Cheng Jialin
Format Journal Article
LanguageEnglish
Published 2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A theoretical nonlinear aeroelastic response analysis for a flexible high-aspect ratio wing excited by harmonic gust load is presented along with a companion wind tunnel test. A multidisci- plinary coupled numerical calculation is developed to simulate the flexible model wing undergoing gust load in the time domain via discrete nonlinear finite element structural dynamic analysis and nonplanar unsteady vortex lattice aerodynamic computation. A dynamic perturbation analysis about a nonlinear static equilibrium is also used to determine the small perturbation flutter bound- ary. A novel noncontact 3-D camera measurement analysis system is firstly used in the wind tunnel test to obtain the spatial large deformation and responses. The responses of the flexible wing under different static equilibrium states and frequency gust loads are discussed. The fair to good quanti- tative agreements between the theoretical and experimental results demonstrate that the presented analysis method is an acceptable way to predict the geometrically nonlinear gust response for flex- ible wings.
Bibliography:A theoretical nonlinear aeroelastic response analysis for a flexible high-aspect ratio wing excited by harmonic gust load is presented along with a companion wind tunnel test. A multidisci- plinary coupled numerical calculation is developed to simulate the flexible model wing undergoing gust load in the time domain via discrete nonlinear finite element structural dynamic analysis and nonplanar unsteady vortex lattice aerodynamic computation. A dynamic perturbation analysis about a nonlinear static equilibrium is also used to determine the small perturbation flutter bound- ary. A novel noncontact 3-D camera measurement analysis system is firstly used in the wind tunnel test to obtain the spatial large deformation and responses. The responses of the flexible wing under different static equilibrium states and frequency gust loads are discussed. The fair to good quanti- tative agreements between the theoretical and experimental results demonstrate that the presented analysis method is an acceptable way to predict the geometrically nonlinear gust response for flex- ible wings.
Gust loads;High-aspect ratio wing;Nonlinear analysis;Unsteady vortex latticemethod (UVLM);Wind tunnels
11-1732/V
ISSN:1000-9361