Highly oriented NdFeB nanocrystalline magnets from partially recombined compacts with ultraf'me grain size by reactive deformation under low pressure

The partially recombined compacts with ultrafine grain size were taken advantage of preparing anisotropic nanocrystalline magnets with full density and homogenous microstructure and texture by reactive deformation under low pressure. Because of the ul- trafine grain size of the precursors, the parti...

Full description

Saved in:
Bibliographic Details
Published in中国稀土学报:英文版 Vol. 33; no. 12; pp. 1298 - 1302
Main Author 余云萍 李军 刘颖 王仁全 郑青 连利仙
Format Journal Article
LanguageEnglish
Published 2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The partially recombined compacts with ultrafine grain size were taken advantage of preparing anisotropic nanocrystalline magnets with full density and homogenous microstructure and texture by reactive deformation under low pressure. Because of the ul- trafine grain size of the precursors, the partially recombined phases could quickly achieve recombination. The results suggested that the newly recombined Nd2Fe14B grains with fme grain size could undergo deformation immediately during the desorp- tion-recombination reaction, and then an obvious anisotropy and uniform alignment would be obtained. The magnetic properties, (BH)max=214 kJ/m3, Br= 1.26 T, Hcj=463 kA/m, were obtained after being treated for 5 min at 820 ℃ in high vacuum under low pres- sure less than 26 MPa. Microstructures of the magnets were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. Magnetic measurements were carried out using a vibrating sample magnetometer (VSM) with the maximum field of 2.88 T. Accurate phase contents were measured by a Mossbauer spectrometer.
Bibliography:11-2788/TF
The partially recombined compacts with ultrafine grain size were taken advantage of preparing anisotropic nanocrystalline magnets with full density and homogenous microstructure and texture by reactive deformation under low pressure. Because of the ul- trafine grain size of the precursors, the partially recombined phases could quickly achieve recombination. The results suggested that the newly recombined Nd2Fe14B grains with fme grain size could undergo deformation immediately during the desorp- tion-recombination reaction, and then an obvious anisotropy and uniform alignment would be obtained. The magnetic properties, (BH)max=214 kJ/m3, Br= 1.26 T, Hcj=463 kA/m, were obtained after being treated for 5 min at 820 ℃ in high vacuum under low pres- sure less than 26 MPa. Microstructures of the magnets were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. Magnetic measurements were carried out using a vibrating sample magnetometer (VSM) with the maximum field of 2.88 T. Accurate phase contents were measured by a Mossbauer spectrometer.
NdzFe14B; nanocrystalline; HDDR; deformation; anisotropy; rare earths
ISSN:1002-0721
2509-4963