TMSCI Promoted Direct sp3 C-H Alkenylation to Construct (E)-2-Styryl-tetrahydrobenzo[d]thiazoles
A high-efficient and stereo-specific approach for the preparation of biologically important (E)-2-styryl-tetra- hydrobenzo[d]thiazoles has been developed via TMSC1 promoted direct sp3 C-H alkenylation of 2-methyl-5,6-di- hydrobenzo[d]thiazol-7(4H)-one under metal-free conditions. Seventeen target co...
Saved in:
Published in | 中国化学:英文版 no. 9; pp. 1077 - 1083 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A high-efficient and stereo-specific approach for the preparation of biologically important (E)-2-styryl-tetra- hydrobenzo[d]thiazoles has been developed via TMSC1 promoted direct sp3 C-H alkenylation of 2-methyl-5,6-di- hydrobenzo[d]thiazol-7(4H)-one under metal-free conditions. Seventeen target compounds were synthesized in ex- cellent yields of 82%--98% under the optimal conditions of 300 mol% TMSCI at 110℃ for 2 h, and their chemical structures were elucidated by IR, NMR, ESI-MS, elemental analyses and X-ray crystallography analysis. A plausible mechanism was also proposed, and this method provided a good functional group conversion for the sp3 C-H substrates. |
---|---|
Bibliography: | (E)-2-styryl-tetrahydrobenzo[d]thiazole, sp3 C-H alkenylation, TMSCI, synthesis A high-efficient and stereo-specific approach for the preparation of biologically important (E)-2-styryl-tetra- hydrobenzo[d]thiazoles has been developed via TMSC1 promoted direct sp3 C-H alkenylation of 2-methyl-5,6-di- hydrobenzo[d]thiazol-7(4H)-one under metal-free conditions. Seventeen target compounds were synthesized in ex- cellent yields of 82%--98% under the optimal conditions of 300 mol% TMSCI at 110℃ for 2 h, and their chemical structures were elucidated by IR, NMR, ESI-MS, elemental analyses and X-ray crystallography analysis. A plausible mechanism was also proposed, and this method provided a good functional group conversion for the sp3 C-H substrates. 31-1547/O6 |
ISSN: | 1001-604X 1614-7065 |