Bi2WO6 quantum dot-intercalated ultrathin montmo- rillonite nanostructure and its enhanced photocatalytic performance

The kinetic competition between electron-hole recombination and water oxidation is a key limitation for the development of efficient solar water splitting materials. In this study, we present a solution for solving this challenge by constructing a quantum dot-intercalated nanostructure. For the firs...

Full description

Saved in:
Bibliographic Details
Published in纳米研究:英文版 no. 10; pp. 1497 - 1506
Main Author Songmei Sun Wenzhong Wang Dong Jiang Ling Zhang Xiaoman Li Yali Zheng Qi An
Format Journal Article
LanguageEnglish
Published 2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The kinetic competition between electron-hole recombination and water oxidation is a key limitation for the development of efficient solar water splitting materials. In this study, we present a solution for solving this challenge by constructing a quantum dot-intercalated nanostructure. For the first time, we show the interlayer charge of the intercalated nanostructure can significantly inhibit the electron-hole recombination in photocatalysis. For Bi2WO6 quantum dots (QDs) intercalated in a montmorillonite (MMT) nanostructure as an example, the average lifetime of the photogenerated charge carriers was increased from 3.06 μs to 18.8 Ds by constructing the intercalated nanostructure. The increased lifetime markedly improved the photocatalytic performance of Bi2WO6 both in solar water oxidation and environmental purification. This work not oMy provides a method to produce QD-intercalated ultrathin nanostructures but also a general route to design efficient semiconductor-based photoconversion materials for solar fuel generation and environmental purification.
Bibliography:photocatalysis,lifetime,ammonia degradation,water oxidation,montmorillonite exfoliation
The kinetic competition between electron-hole recombination and water oxidation is a key limitation for the development of efficient solar water splitting materials. In this study, we present a solution for solving this challenge by constructing a quantum dot-intercalated nanostructure. For the first time, we show the interlayer charge of the intercalated nanostructure can significantly inhibit the electron-hole recombination in photocatalysis. For Bi2WO6 quantum dots (QDs) intercalated in a montmorillonite (MMT) nanostructure as an example, the average lifetime of the photogenerated charge carriers was increased from 3.06 μs to 18.8 Ds by constructing the intercalated nanostructure. The increased lifetime markedly improved the photocatalytic performance of Bi2WO6 both in solar water oxidation and environmental purification. This work not oMy provides a method to produce QD-intercalated ultrathin nanostructures but also a general route to design efficient semiconductor-based photoconversion materials for solar fuel generation and environmental purification.
11-5974/O4
ISSN:1998-0124
1998-0000