Using CMIP5 model outputs to investigate the initial errors that cause the "spring predictability barrier" for El Nifio events

Most ocean-atmosphere coupled models have difficulty in predicting the E1 Nifio-Southern Oscillation (ENSO) when starting from the boreal spring season. However, the cause of this spring predictability barrier (SPB) phenomenon remains elusive. We investigated the spatial characteristics of optimal i...

Full description

Saved in:
Bibliographic Details
Published in中国科学:地球科学英文版 no. 5; pp. 685 - 696
Main Author ZHANG Jing DUAN WanSuo ZHI XieFei
Format Journal Article
LanguageEnglish
Published 2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Most ocean-atmosphere coupled models have difficulty in predicting the E1 Nifio-Southern Oscillation (ENSO) when starting from the boreal spring season. However, the cause of this spring predictability barrier (SPB) phenomenon remains elusive. We investigated the spatial characteristics of optimal initial errors that cause a significant SPB for E1 Nifio events by using the monthly mean data of the pre-industrial (PI) control runs from several models in CMIP5 experiments. The results indicated that the SPB-related optimal initial errors often present an SST pattern with positive errors in the central-eastern equatorial Pa- cific, and a subsurface temperature pattern with positive errors in the upper layers of the eastern equatorial Pacific, and nega- tive errors in the lower layers of the western equatorial Pacific. The SPB-related optimal initial errors exhibit a typical La Ni- fia-like evolving mode, ultimately causing a large but negative prediction error of the Nifio-3.4 SST anomalies for El Nifio events. The negative prediction errors were found to originate from the lower layers of the western equatorial Pacific and then grow to be large in the eastern equatorial Pacific. It is therefore reasonable to suggest that the E1 Nifio predictions may be most sensitive to the initial errors of temperature in the subsurface layers of the western equatorial Pacific and the Nifio-3.4 region, thus possibly representing sensitive areas for adaptive observation. That is, if additional observations were to be preferentially deployed in these two regions, it might be possible to avoid large prediction errors for E1 Nifio and generate a better forecast than one based on additional observations targeted elsewhere. Moreover, we also confirmed that the SPB-related optimal initial errors bear a strong resemblance to the optimal precursory disturbance for E1 Nifio and La Nifia events. This indicated that im- provement of the observation network by additional observations in the identified sensitive areas would also be helpful in de- tecting the signals provided by the precursory disturbance, which may greatly improve the ENSO prediction skill.
Bibliography:El Nino-Southern Oscillation, spring predictability barrier, optimal initial errors, optimal precursory disturbance
11-5843/P
Most ocean-atmosphere coupled models have difficulty in predicting the E1 Nifio-Southern Oscillation (ENSO) when starting from the boreal spring season. However, the cause of this spring predictability barrier (SPB) phenomenon remains elusive. We investigated the spatial characteristics of optimal initial errors that cause a significant SPB for E1 Nifio events by using the monthly mean data of the pre-industrial (PI) control runs from several models in CMIP5 experiments. The results indicated that the SPB-related optimal initial errors often present an SST pattern with positive errors in the central-eastern equatorial Pa- cific, and a subsurface temperature pattern with positive errors in the upper layers of the eastern equatorial Pacific, and nega- tive errors in the lower layers of the western equatorial Pacific. The SPB-related optimal initial errors exhibit a typical La Ni- fia-like evolving mode, ultimately causing a large but negative prediction error of the Nifio-3.4 SST anomalies for El Nifio events. The negative prediction errors were found to originate from the lower layers of the western equatorial Pacific and then grow to be large in the eastern equatorial Pacific. It is therefore reasonable to suggest that the E1 Nifio predictions may be most sensitive to the initial errors of temperature in the subsurface layers of the western equatorial Pacific and the Nifio-3.4 region, thus possibly representing sensitive areas for adaptive observation. That is, if additional observations were to be preferentially deployed in these two regions, it might be possible to avoid large prediction errors for E1 Nifio and generate a better forecast than one based on additional observations targeted elsewhere. Moreover, we also confirmed that the SPB-related optimal initial errors bear a strong resemblance to the optimal precursory disturbance for E1 Nifio and La Nifia events. This indicated that im- provement of the observation network by additional observations in the identified sensitive areas would also be helpful in de- tecting the signals provided by the precursory disturbance, which may greatly improve the ENSO prediction skill.
ISSN:1674-7313
1869-1897