Development and calibration of the Moon-based EUV camera for Chang'e-3

The process of development and calibration for the first Moon-based ex- treme ultraviolet (EUV) camera to observe Earth's plasmasphere is introduced and the design, test and calibration results are presented. The EUV camera is composed of a multilayer film mirror, a thin film filter, a photon-counti...

Full description

Saved in:
Bibliographic Details
Published in天文和天体物理学研究:英文版 no. 12; pp. 1654 - 1663
Main Author Bo Chen Ke-Fei Song Zhao-Hui Li Qing-Wen Wu Qi-Liang Ni Xiao-Dong Wang Jin-Jiang Xie Shi-Jie Liu Ling-Ping He Fei He Xiao-Guang Wang Bin Chen Hong-Ji Zhang Xiao-DongWang Hai-Feng Wang Xin Zheng Shu-Lin E Yong-Cheng Wang Tao Yu Liang Sun Jin-Ling Wang Zhi Wang Liang Yang Qing-Long Hu Ke Qiao Zhong-Su Wang Xian-Wei Yang Hai-Ming Bao Wen-Guang Liu Zhe Li Ya Chen Yang Gao Hui Sun Wen-Chang Chen
Format Journal Article
LanguageEnglish
Published 2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The process of development and calibration for the first Moon-based ex- treme ultraviolet (EUV) camera to observe Earth's plasmasphere is introduced and the design, test and calibration results are presented. The EUV camera is composed of a multilayer film mirror, a thin film filter, a photon-counting imaging detector, a mech- anism that can adjust the direction in two dimensions, a protective cover, an electronic unit and a thermal control unit. The center wavelength of the EUV camera is 30.2 nm with a bandwidth of 4.6nm. The field of view is 14.7° with an angular resolution of 0.08°, and the sensitivity of the camera is 0.11 count s-1 Rayleigh-1. The geomet- ric calibration, the absolute photometric calibration and the relative photometric cal- ibration are carried out under different temperatures before launch to obtain a matrix that can correct geometric distortion and a matrix for relative photometric correction, which are used for in-orbit correction of the images to ensure their accuracy.
Bibliography:The process of development and calibration for the first Moon-based ex- treme ultraviolet (EUV) camera to observe Earth's plasmasphere is introduced and the design, test and calibration results are presented. The EUV camera is composed of a multilayer film mirror, a thin film filter, a photon-counting imaging detector, a mech- anism that can adjust the direction in two dimensions, a protective cover, an electronic unit and a thermal control unit. The center wavelength of the EUV camera is 30.2 nm with a bandwidth of 4.6nm. The field of view is 14.7° with an angular resolution of 0.08°, and the sensitivity of the camera is 0.11 count s-1 Rayleigh-1. The geomet- ric calibration, the absolute photometric calibration and the relative photometric cal- ibration are carried out under different temperatures before launch to obtain a matrix that can correct geometric distortion and a matrix for relative photometric correction, which are used for in-orbit correction of the images to ensure their accuracy.
11-5721/P
Chang'e-3 -- EUV camera: development: calibration -- Earth's plas-masphere -- lunar exploration
ISSN:1674-4527
2397-6209