Polarization effect in (e, 2e) reaction process for Ar (3s) in coplanar asymmetric geometry
The (e, 2e) triple differential cross sections (TDCSs) of Ar (3s) are calculated by using distorted-wave Born approx- imation under coplanar asymmetric geometry. The incident electron energy is 113.5 eV, and the scattering electron angle 01 is -15~. The ejected electron energy is set at 10 eV, 7.5 e...
Saved in:
Published in | 中国物理B:英文版 no. 11; pp. 268 - 272 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The (e, 2e) triple differential cross sections (TDCSs) of Ar (3s) are calculated by using distorted-wave Born approx- imation under coplanar asymmetric geometry. The incident electron energy is 113.5 eV, and the scattering electron angle 01 is -15~. The ejected electron energy is set at 10 eV, 7.5 eV, 5 eV, and 2 eV, respectively. The polarization effects have been discussed and the polarization potential Vpol changing from a second-order to a fourth-order term has been analyzed. Our calculated TDCSs have been compared with reported experimental and theoretical results, and the calculated TDCSs of polarization potential up to the fourth order could give a good fit with experimental results in the binary region, but fail to predict the correct recoil-to-binary ratio in most cases. |
---|---|
Bibliography: | The (e, 2e) triple differential cross sections (TDCSs) of Ar (3s) are calculated by using distorted-wave Born approx- imation under coplanar asymmetric geometry. The incident electron energy is 113.5 eV, and the scattering electron angle 01 is -15~. The ejected electron energy is set at 10 eV, 7.5 eV, 5 eV, and 2 eV, respectively. The polarization effects have been discussed and the polarization potential Vpol changing from a second-order to a fourth-order term has been analyzed. Our calculated TDCSs have been compared with reported experimental and theoretical results, and the calculated TDCSs of polarization potential up to the fourth order could give a good fit with experimental results in the binary region, but fail to predict the correct recoil-to-binary ratio in most cases. (e, 2e) reaction, distorted-wave Born approximation, triple differential cross sections, polarizationeffect Zhou Li-Xia, Wang Dian-Sheng, Yan You-Guo, and Wang Cai-Ling( College of Science, China University of Petroleum, Qingdao 266580, China) 11-5639/O4 |
ISSN: | 1674-1056 2058-3834 |