Modeling of Ce(IV) transport through a dispersion flat combined liquid membrane with carrier P507
A mathematical model for the transport of Ce (IV) from hydrochloric acid solutions through dispersion flat combined liquid membrane (DFCLM) with contain 2- ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester (P507) as the carrier, dissolved in kerosene as the membrane solution have been studied. Th...
Saved in:
Published in | 中国环境科学与工程前沿:英文版 no. 4; pp. 503 - 509 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A mathematical model for the transport of Ce (IV) from hydrochloric acid solutions through dispersion flat combined liquid membrane (DFCLM) with contain 2- ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester (P507) as the carrier, dissolved in kerosene as the membrane solution have been studied. This process of facilitated transport, based on membrane technology, is a variation on the conventional technique of solvent extraction and may be described mathematically using Fick's second law. The equations for transport velocity are derived considering the diffusion of P507 and its metallic complexes through the liquid membrane. In this work, the system is considered to be in a transient state, and chemical reaction between Ce(IV) and the carrier to take place only at the solvent-aqueous interfaces. Model concentration profiles are obtained for the Ce(IV), from which extraction velocities are predicted. The experimental and simulated Ce(IV) extractions showed similar tendencies for a high Ce (IV) concentration and acidity case.The model results indicate that high initial Ce(IV) concentrations and acidity both have detrimental effects on Ce(IV) extraction and stripping. The diffusion coefficient of Ce(IV) in the membrane and the thickness of diffusion layer between feed phase and membrane phase are obtained and the values are 6.31 × 10-8m2·s-1 and 31.2 μm, respectively. The results are in good agreement with experimental results. |
---|---|
Bibliography: | A mathematical model for the transport of Ce (IV) from hydrochloric acid solutions through dispersion flat combined liquid membrane (DFCLM) with contain 2- ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester (P507) as the carrier, dissolved in kerosene as the membrane solution have been studied. This process of facilitated transport, based on membrane technology, is a variation on the conventional technique of solvent extraction and may be described mathematically using Fick's second law. The equations for transport velocity are derived considering the diffusion of P507 and its metallic complexes through the liquid membrane. In this work, the system is considered to be in a transient state, and chemical reaction between Ce(IV) and the carrier to take place only at the solvent-aqueous interfaces. Model concentration profiles are obtained for the Ce(IV), from which extraction velocities are predicted. The experimental and simulated Ce(IV) extractions showed similar tendencies for a high Ce (IV) concentration and acidity case.The model results indicate that high initial Ce(IV) concentrations and acidity both have detrimental effects on Ce(IV) extraction and stripping. The diffusion coefficient of Ce(IV) in the membrane and the thickness of diffusion layer between feed phase and membrane phase are obtained and the values are 6.31 × 10-8m2·s-1 and 31.2 μm, respectively. The results are in good agreement with experimental results. 10-1013/X Dispersion fiat combined liquid membrane (DFCLM), dispersion phase, feed phase, 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester, Ce (IV) |
ISSN: | 2095-2201 2095-221X |