Identification of QTLs for Starch Content in Sweetpotato (Ipomoea batatas (L.) Lam.)
Sweetpotato (Ipomoea batatas (L.) Lam.) breeding is challenging due to its genetic complexity. In the present study, interval mapping (IM) and multiple quantitative trait locus (QTL) model (MQM) analysis were used to identify QTLs for starch content with a mapping population consisting of 202 F1 ind...
Saved in:
Published in | 农业科学学报:英文版 no. 2; pp. 310 - 315 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Sweetpotato (Ipomoea batatas (L.) Lam.) breeding is challenging due to its genetic complexity. In the present study, interval mapping (IM) and multiple quantitative trait locus (QTL) model (MQM) analysis were used to identify QTLs for starch content with a mapping population consisting of 202 F1 individuals of a cross between Xushu 18, a cultivar susceptible to stem nematodes, with high yield and moderate starch, and Xu 781, which is resistant to stem nematodes, has low yield and high starch content. Six QTLs for starch content were mapped on six linkage groups of the Xu 781 map, explaining 9.1-38.8% of the variation. Especially, one of them, DMFN 4, accounted for 38.8% of starch content variation, which is the QTL that explains the highest phenotypic variation detected to date in sweetpotato. All of the six QTLs had a positive effect on the variation of the starch content, which indicated the inheritance derived from the parent Xu 781. Two QTLs for starch content were detected on two linkage groups of the Xushu 18 map, explaining 14.3 and 16.1% of the variation, respectively. They had a negative effect on the variation, indicating the inheritance derived from Xu 781. Seven of eight QTLs were co-localized with a single marker. This is the first report on the development of QTLs co-localized with a single marker in sweetpotato. These QTLs and their co-localized markers may be used in marker-assisted breeding for the starch content of sweetpotato. |
---|---|
Bibliography: | co-localized marker, lpomoea batatas (L.) Lam., QTLs, starch content Sweetpotato (Ipomoea batatas (L.) Lam.) breeding is challenging due to its genetic complexity. In the present study, interval mapping (IM) and multiple quantitative trait locus (QTL) model (MQM) analysis were used to identify QTLs for starch content with a mapping population consisting of 202 F1 individuals of a cross between Xushu 18, a cultivar susceptible to stem nematodes, with high yield and moderate starch, and Xu 781, which is resistant to stem nematodes, has low yield and high starch content. Six QTLs for starch content were mapped on six linkage groups of the Xu 781 map, explaining 9.1-38.8% of the variation. Especially, one of them, DMFN 4, accounted for 38.8% of starch content variation, which is the QTL that explains the highest phenotypic variation detected to date in sweetpotato. All of the six QTLs had a positive effect on the variation of the starch content, which indicated the inheritance derived from the parent Xu 781. Two QTLs for starch content were detected on two linkage groups of the Xushu 18 map, explaining 14.3 and 16.1% of the variation, respectively. They had a negative effect on the variation, indicating the inheritance derived from Xu 781. Seven of eight QTLs were co-localized with a single marker. This is the first report on the development of QTLs co-localized with a single marker in sweetpotato. These QTLs and their co-localized markers may be used in marker-assisted breeding for the starch content of sweetpotato. 10-1039/S |
ISSN: | 2095-3119 2352-3425 |