Mutation on Knots and Whitney's 2-Isomorphism Theorem

Whitney's 2-switching theorem states that any two embeddings of a 2-connected planar graph in S2 can be connected via a sequence of simple operations, named 2-switching. In this paper, we obtain two operations on planar graphs from the view point of knot theory, which we will term "twisting" and "2-...

Full description

Saved in:
Bibliographic Details
Published in数学学报:英文版 no. 6; pp. 1219 - 1230
Main Author Zhi Yun CHENG Hong Zhu GAO
Format Journal Article
LanguageEnglish
Published 2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Whitney's 2-switching theorem states that any two embeddings of a 2-connected planar graph in S2 can be connected via a sequence of simple operations, named 2-switching. In this paper, we obtain two operations on planar graphs from the view point of knot theory, which we will term "twisting" and "2-switching" respectively. With the twisting operation, we give a pure geometrical proof of Whitney's 2-switching theorem. As an application, we obtain some relationships between two knots which correspond to the same signed planar graph. Besides, we also give a necessary and sufficient condition to test whether a pair of reduced alternating diagrams are mutants of each other by their signed planar graphs.
AbstractList Whitney's 2-switching theorem states that any two embeddings of a 2-connected planar graph in S2 can be connected via a sequence of simple operations, named 2-switching. In this paper, we obtain two operations on planar graphs from the view point of knot theory, which we will term "twisting" and "2-switching" respectively. With the twisting operation, we give a pure geometrical proof of Whitney's 2-switching theorem. As an application, we obtain some relationships between two knots which correspond to the same signed planar graph. Besides, we also give a necessary and sufficient condition to test whether a pair of reduced alternating diagrams are mutants of each other by their signed planar graphs.
Author Zhi Yun CHENG Hong Zhu GAO
AuthorAffiliation School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, P. R. China
Author_xml – sequence: 1
  fullname: Zhi Yun CHENG Hong Zhu GAO
BookMark eNrjYmDJy89LZWLgNDQxttQ1NzM0Z4GyLUwNzTgYuIqLswwMTE0tDcw4Gcx9S0sSSzLz8xSAyDsvv6RYITEvRSE8I7MkL7Xy_Z72YgUjXc_i_Nz8ooKMzOJchZCM1Pyi1FweBta0xJziVF4ozc2g6OYa4uyhm5yRn5demJmXHl9QlJmbWFQZb2JqYWxiYW5uTIwaAL7YOJI
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate Mutation on Knots and Whitney's 2-Isomorphism Theorem
EISSN 1439-7617
EndPage 1230
ExternalDocumentID 45834877
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
23M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2RA
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VR
5VS
67Z
6NX
7WY
88I
8FE
8FG
8FL
8G5
8TC
8UJ
92L
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJCF
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFMKY
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCEZO
CCPQU
CCVFK
CHBEP
COF
CQIGP
CS3
CSCUP
CW9
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAS
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P62
P9R
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOS
R4E
R89
R9I
ROL
RPX
RSV
S16
S1Z
S26
S27
S28
S3B
SAP
SCL
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
ZWQNP
~8M
~A9
~WA
ID FETCH-chongqing_primary_458348773
ISSN 1439-8516
IngestDate Wed Feb 14 10:43:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-chongqing_primary_458348773
Notes Planar graph, twisting, 2-switching, mutation
Whitney's 2-switching theorem states that any two embeddings of a 2-connected planar graph in S2 can be connected via a sequence of simple operations, named 2-switching. In this paper, we obtain two operations on planar graphs from the view point of knot theory, which we will term "twisting" and "2-switching" respectively. With the twisting operation, we give a pure geometrical proof of Whitney's 2-switching theorem. As an application, we obtain some relationships between two knots which correspond to the same signed planar graph. Besides, we also give a necessary and sufficient condition to test whether a pair of reduced alternating diagrams are mutants of each other by their signed planar graphs.
11-2039/O1
ParticipantIDs chongqing_primary_45834877
PublicationCentury 2000
PublicationDate 2013
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013
PublicationDecade 2010
PublicationTitle 数学学报:英文版
PublicationTitleAlternate Acta Mathematica Sinica
PublicationYear 2013
SSID ssj0055906
Score 3.9048355
Snippet Whitney's 2-switching theorem states that any two embeddings of a 2-connected planar graph in S2 can be connected via a sequence of simple operations, named...
SourceID chongqing
SourceType Publisher
StartPage 1219
SubjectTerms 充分必要条件
切换
同构定理
嵌入定理
平面图形
操作
突变
纽结理论
Title Mutation on Knots and Whitney's 2-Isomorphism Theorem
URI http://lib.cqvip.com/qk/85800X/201306/45834877.html
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT4MwFG7MfNEH4zU6L8HEPhEM1wKPZWObms2Xmcy9LNyW-SCowIt_wD_lf_IveAqFsUSNmpCmtKGUfuT0nLbnOwhdBIpFQjA8JE-Zq5KuB4rkgUyUDC8kpheqUbneMRyRwZ1-PTEmyzifhXdJ5l8Gr1_6lfwHVSgDXJmX7B-QrRuFAsgDvpACwpD-CuNhzs8KwnUTJ1nJt8xi3rEzXG4POx1smamoSldp8pjAkLKQGIU7Pl-x5Wopdgm2DezI2DUw7WJKGhmCLYqpwduzKXYtbDnYUYqnoNbEroktG1v1sdjp4kG8z2NGuDDqiwMWz2i6yMU-vW2uMpTuoVwkgsoigV7GCauXZSYpvS75H9IUg0olByN-y_deVpmt2ZYt2EuMCkCXNRBS69TpOr1qIgVbRy6dw3gHGP3FAnr8DJN6QwkYb6Mtrr0LtIRiB61F8S7aHNbUt-keMitQBLgKUAQAReCgfLy_pcIKHAKHYx-d99xxZyDVL589lUwgs-oLtAPUipM4OkSCqpFwTsBkscHeD8Ca9T0zMPwQFG9ZiTT7CLW_b6f9U-Ux2lCLWBxs_ecEtbKXPDoFjSjzz_jIfQJODwrR
link.rule.ids 315,783,787,4033
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutation+on+Knots+and+Whitney%EF%BC%87s+2-Isomorphism+Theorem&rft.jtitle=%E6%95%B0%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Zhi+Yun+CHENG+Hong+Zhu+GAO&rft.date=2013&rft.issn=1439-8516&rft.eissn=1439-7617&rft.issue=6&rft.spage=1219&rft.epage=1230&rft.externalDocID=45834877
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85800X%2F85800X.jpg