Mutation on Knots and Whitney's 2-Isomorphism Theorem
Whitney's 2-switching theorem states that any two embeddings of a 2-connected planar graph in S2 can be connected via a sequence of simple operations, named 2-switching. In this paper, we obtain two operations on planar graphs from the view point of knot theory, which we will term "twisting" and "2-...
Saved in:
Published in | 数学学报:英文版 no. 6; pp. 1219 - 1230 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Whitney's 2-switching theorem states that any two embeddings of a 2-connected planar graph in S2 can be connected via a sequence of simple operations, named 2-switching. In this paper, we obtain two operations on planar graphs from the view point of knot theory, which we will term "twisting" and "2-switching" respectively. With the twisting operation, we give a pure geometrical proof of Whitney's 2-switching theorem. As an application, we obtain some relationships between two knots which correspond to the same signed planar graph. Besides, we also give a necessary and sufficient condition to test whether a pair of reduced alternating diagrams are mutants of each other by their signed planar graphs. |
---|---|
Bibliography: | Planar graph, twisting, 2-switching, mutation Whitney's 2-switching theorem states that any two embeddings of a 2-connected planar graph in S2 can be connected via a sequence of simple operations, named 2-switching. In this paper, we obtain two operations on planar graphs from the view point of knot theory, which we will term "twisting" and "2-switching" respectively. With the twisting operation, we give a pure geometrical proof of Whitney's 2-switching theorem. As an application, we obtain some relationships between two knots which correspond to the same signed planar graph. Besides, we also give a necessary and sufficient condition to test whether a pair of reduced alternating diagrams are mutants of each other by their signed planar graphs. 11-2039/O1 |
ISSN: | 1439-8516 1439-7617 |