基于串联结构的分布式模型预测控制

分布式模型预测控制(Distributed model predictive control,DMPC)是一类用十多输入多输出的人规模系统的控制方式.每个智能体通过相互协作完成整个系统的摔制.已有的分布式预测摔制算法可以划分为迭代式算法和非迭代算法:迭代算法在迭代到收敛情况下,具有集中式预测控制(Centralized model predictive control,CMPC)算法的性能,但迭代次数过多,子系统问通信量人;非迭代算法不需要迭代,但性能有一定损失.本文提出了一种基十串联结构的非迭代分布式预测控制算法.本文算法在串联结构系统中可以有效减少计算量,并结合氧化铝碳分解(Alumina...

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 39; no. 5; pp. 510 - 518
Main Author 蔡星 谢磊 苏宏业 古勇
Format Journal Article
LanguageChinese
Published 2013
Subjects
Online AccessGet full text
ISSN0254-4156
1874-1029

Cover

More Information
Summary:分布式模型预测控制(Distributed model predictive control,DMPC)是一类用十多输入多输出的人规模系统的控制方式.每个智能体通过相互协作完成整个系统的摔制.已有的分布式预测摔制算法可以划分为迭代式算法和非迭代算法:迭代算法在迭代到收敛情况下,具有集中式预测控制(Centralized model predictive control,CMPC)算法的性能,但迭代次数过多,子系统问通信量人;非迭代算法不需要迭代,但性能有一定损失.本文提出了一种基十串联结构的非迭代分布式预测控制算法.本文算法在串联结构系统中可以有效减少计算量,并结合氧化铝碳分解(Alumina continuous carbonationdecomposition process,ACCDP)这一串联过程,通过仿真验证了算法的有效性;同时分析了算法运用在串联结构下的性能并证明了其稳定性.
Bibliography:11-2109/TP
CAI Xing1 XIE Lei1 SU Hong-Ye1 GU Yong1 1.Institute of Cyber-Systems and Control,Zheiiang University.Hangzhou 310027
Distributed model predictive control(DMPC); centralized model predictive control(CMPC); cascade pro cesses; iterative algorithm; communication burden
Distributed model predictive control(DMPC) is a useful control theme which is usually used to control large scale systems with multiple inputs and multiple outputs.Every agent communicates with the other in order to control the whole system.The algorithms for distributed model predictive control can be divided into two categories,one is iterative and the other is non iterative.The iterative ones can reach the same performance as the centralized model predictive control(CMPC) when they converge,however,because of the large number of iterations,the communication burden is heavy;while the non iterative ones do not need iteration,the performance is not as good as centralized algorithms.This article proposes a non iterative algorithm of distrib
ISSN:0254-4156
1874-1029