POLY(THIOPHENE-3-ACETIC ACID)-PALLADIUM NANOPARTICLE COMPOSITE MODIFIED ELECTRODES FOR SUPERSENSITIVE DETERMINATION OF HYDRAZINE

A promising electrochemical sensor was fabricated by electrodeposition of Pd nanoparticles (PdNPs) on poly(thiophene-3-acetic acid) (PTAA)-modified glassy carbon electrode (GCE), forming a PdNPs/PTAA composites-modified GCE (PdNPs/PTAA/GCE). Scanning electron microscope (SEM) and electrochemical tec...

Full description

Saved in:
Bibliographic Details
Published in高分子科学:英文版 no. 3; pp. 419 - 426
Main Author Ou Zhang Hong-mei Yu Li-min Lu Yang-ping Wen Xue-min Duan Jing-kun Xu
Format Journal Article
LanguageEnglish
Published 2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A promising electrochemical sensor was fabricated by electrodeposition of Pd nanoparticles (PdNPs) on poly(thiophene-3-acetic acid) (PTAA)-modified glassy carbon electrode (GCE), forming a PdNPs/PTAA composites-modified GCE (PdNPs/PTAA/GCE). Scanning electron microscope (SEM) and electrochemical techniques were used for the characterization of these composites. It was found that the PdNPs/PTAA layer was very uniform. ]Electrochemical experiments showed that this proposed PdNPs/PTAA composites-modified electrode exhibited excellent electrocatalytic activity towards the oxidation of hydrazine. Under the optimum conditions, the proposed sensor can be applied to the quantification of hydrazine with a wide linear range from 8.0 × 10-9 mol/L to 1.0 × 10-5 mol/L with a low detection limit of 2.67 × 10-9 mol/L. The experiment results also showed that the sensor exhibited good reproducibility and long-term stability, as well as high selectivity with no interference from other potential competing species.
Bibliography:Sensor; Hydrazine; Nanocomposites; Pd nanoparticles; Conducting polymer.
A promising electrochemical sensor was fabricated by electrodeposition of Pd nanoparticles (PdNPs) on poly(thiophene-3-acetic acid) (PTAA)-modified glassy carbon electrode (GCE), forming a PdNPs/PTAA composites-modified GCE (PdNPs/PTAA/GCE). Scanning electron microscope (SEM) and electrochemical techniques were used for the characterization of these composites. It was found that the PdNPs/PTAA layer was very uniform. ]Electrochemical experiments showed that this proposed PdNPs/PTAA composites-modified electrode exhibited excellent electrocatalytic activity towards the oxidation of hydrazine. Under the optimum conditions, the proposed sensor can be applied to the quantification of hydrazine with a wide linear range from 8.0 × 10-9 mol/L to 1.0 × 10-5 mol/L with a low detection limit of 2.67 × 10-9 mol/L. The experiment results also showed that the sensor exhibited good reproducibility and long-term stability, as well as high selectivity with no interference from other potential competing species.
11-2015/O6
ISSN:0256-7679
1439-6203