A dynamic model of skeletal muscle based on collective behavior of myosin motors Biomechanics of skeletal muscle based on working mechanism of myosin motors (I)

A dynalnic model of skeletal muscle is developed to describe its activation kinetics and contraction dynamics based on the collective working mechanism of myosin II motors with a statistical mechanics method. According to the structure of sar- comeres arranged in series and in parallel, the mechanic...

Full description

Saved in:
Bibliographic Details
Published in中国科学:技术科学英文版 Vol. 55; no. 6; pp. 1589 - 1595
Main Author GUO Zhao YIN YueHong
Format Journal Article
LanguageEnglish
Published 2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A dynalnic model of skeletal muscle is developed to describe its activation kinetics and contraction dynamics based on the collective working mechanism of myosin II motors with a statistical mechanics method. According to the structure of sar- comeres arranged in series and in parallel, the mechanical properties of skeletal muscle are studied. This model reveals the re- lations between action potential and muscle characteristics. It is shown that calcium concentration in sarcoplasmic (SP) in- creases linearly with the increasing stimulation frequency and gradually reaches saturation. Active force and contraction veloc- ity follow the trend of calcium concentration and reach a peak value at the maximum stimulation frequency. Contraction ve- locity is inversely proportional to the load while the contraction power increases to maximum and then reduces to zero with the increasing load. These properties are consistent with published physiological experimental results of skeletal muscle.
Bibliography:skeletal muscle, sacromere, molecular motor, collective behavior, dynamic model
11-5845/TH
A dynalnic model of skeletal muscle is developed to describe its activation kinetics and contraction dynamics based on the collective working mechanism of myosin II motors with a statistical mechanics method. According to the structure of sar- comeres arranged in series and in parallel, the mechanical properties of skeletal muscle are studied. This model reveals the re- lations between action potential and muscle characteristics. It is shown that calcium concentration in sarcoplasmic (SP) in- creases linearly with the increasing stimulation frequency and gradually reaches saturation. Active force and contraction veloc- ity follow the trend of calcium concentration and reach a peak value at the maximum stimulation frequency. Contraction ve- locity is inversely proportional to the load while the contraction power increases to maximum and then reduces to zero with the increasing load. These properties are consistent with published physiological experimental results of skeletal muscle.
ISSN:1674-7321
1869-1900