Formation of Extended Covalently Bonded Ni Porphyrin Networks on the Au(lll) Surface

The growth and ordering of {5,10,15,20-tetrakis(4-bromophenyl)porphyrinato}nickel(II) (NiTBrPP) molecules on the Au(111) surface have been investigated using scanning tunnelling microscopy, X-ray absorption, core-level photoemission, and microbeam low-energy electron diffraction. When deposited onto...

Full description

Saved in:
Bibliographic Details
Published in纳米研究:英文版 Vol. 4; no. 4; pp. 376 - 384
Main Author Sergey A. Krasnikov Catherine M. Doyle Natalia N. Sergeeva Alexei B. Preobrajenski Nikolay A.Vinogradov Yulia N. Sergeeva Alexei A. Zakharov Mathias O. Senge Attilio A. Cafolla
Format Journal Article
LanguageEnglish
Published 2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The growth and ordering of {5,10,15,20-tetrakis(4-bromophenyl)porphyrinato}nickel(II) (NiTBrPP) molecules on the Au(111) surface have been investigated using scanning tunnelling microscopy, X-ray absorption, core-level photoemission, and microbeam low-energy electron diffraction. When deposited onto the substrate at room temperature, the NiTBrPP forms a well-ordered close-packed molecular layer in which the molecules have a flat orientation with the porphyrin macrocycle plane lying parallel to the substrate. Annealing of the NiTBrPP layer on the Au(111) surface at 525 K leads to dissociation of bromine from the porphyrin followed by the formation of covalent bonds between the phenyl substituents of the porphyrin. This results in the formation of continuous covalently bonded porphyrin networks, which are stable up to 800 K and can be recovered after exposure to ambient conditions. By controlling the experimental conditions, a robust, extended porphyrin network can be prepared on the Au(111) surface that has many potential applications such as protective coatings, in sensing or as a host structure for molecules and clusters.
Bibliography:Porphyrins, covalently bonded networks, scanning tunnelling microscopy, X-ray photoemission spectroscopy,near-edge X-ray absorption fine structure, Au(111)
The growth and ordering of {5,10,15,20-tetrakis(4-bromophenyl)porphyrinato}nickel(II) (NiTBrPP) molecules on the Au(111) surface have been investigated using scanning tunnelling microscopy, X-ray absorption, core-level photoemission, and microbeam low-energy electron diffraction. When deposited onto the substrate at room temperature, the NiTBrPP forms a well-ordered close-packed molecular layer in which the molecules have a flat orientation with the porphyrin macrocycle plane lying parallel to the substrate. Annealing of the NiTBrPP layer on the Au(111) surface at 525 K leads to dissociation of bromine from the porphyrin followed by the formation of covalent bonds between the phenyl substituents of the porphyrin. This results in the formation of continuous covalently bonded porphyrin networks, which are stable up to 800 K and can be recovered after exposure to ambient conditions. By controlling the experimental conditions, a robust, extended porphyrin network can be prepared on the Au(111) surface that has many potential applications such as protective coatings, in sensing or as a host structure for molecules and clusters.
11-5974/O4
ISSN:1998-0124
1998-0000