[{Re6Q8}(SO3)6]10– (Q = S or Se): Facile Synthesis and Properties of the Most Highly Charged Octahedral Cluster Complexes and High Magnetic Relaxivity of Their Colloids with Gd3+ Ions
New octahedral rhenium cluster complexes [{Re6Q8}(SO3)6]10– (Q = S or Se) were synthesized starting from [{Re6Q8}(H2O)4(OH)2]·12H2O. The complexes were crystallized as sodium salts and characterized by X-ray single-crystal diffraction and elemental analyses, IR, UV/vis and luminescence spectroscop...
Saved in:
Published in | Inorganic chemistry Vol. 58; no. 23; pp. 15889 - 15897 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
02.12.2019
|
Online Access | Get full text |
Cover
Loading…
Summary: | New octahedral rhenium cluster complexes [{Re6Q8}(SO3)6]10– (Q = S or Se) were synthesized starting from [{Re6Q8}(H2O)4(OH)2]·12H2O. The complexes were crystallized as sodium salts and characterized by X-ray single-crystal diffraction and elemental analyses, IR, UV/vis and luminescence spectroscopies. Magnetic relaxation data demonstrate the complex formation of the cluster units with gadolinium ions. The analysis of the magnetic relaxation rates measured at various Gd:cluster ratios and different concentrations revealed the conversion of the aggregates (Gd x [{Re6Se8}(SO3)6] y ) n− into a nanoparticulate form even at x = 1 and y ≥ 1. Thus, the self-assembly of the cluster units into the nanoparticles is greatly facilitated by counterion binding with sodium cations. The concentration conditions were optimized for the formation and hydrophilization of Na x Gd y [{Re6Q8}(SO3)6]-based colloids with the magnetic relaxivity values of r 1(2) = 21.0(24.1) and r 1(2) = 25.9(29.8) mM–1 s–1 for the {Re6S8}2+ and {Re6Se8}2+ derivatives, respectively. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.9b02346 |