一种基于改进VPGA优化Elman神经网络的电力线通信数据处理算法

为了提高宽带电力线通信系统的通信质量,基于宽带电力线通信系统的基本原理,构建了宽带电力线通信系统的仿真模型.以广东云浮某小区用户电表的实际采集数据作为原始数据,在500 m的四径信道模型下,分别引入了BP神经网络和Elman神经网络进行了通信质量的仿真测试.针对神经网络算法普遍存在的抗噪声性能差的缺点,提出一种基于改进VPGA优化的Elman神经网络用于电力线通信系统解映射模块的数据处理,并进行了仿真测试.实验结果表明,该算法不占用宝贵的频谱资源且实现方便,并且除去信号被噪声淹没等极端恶劣的信道环境以外,均可以显著提高宽带电力线通信系统的通信质量,降低误码率....

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 47; no. 6; pp. 58 - 65
Main Authors 谢文旺, 孙云莲, 易仕敏, 王华佑, 徐冰涵
Format Journal Article
LanguageChinese
Published 武汉大学电气与自动化学院,湖北武汉,430072%广东电网责任有限公司,广东广州,510620 16.03.2019
Subjects
Online AccessGet full text
ISSN1674-3415
DOI10.7667/PSPC180406

Cover

Abstract 为了提高宽带电力线通信系统的通信质量,基于宽带电力线通信系统的基本原理,构建了宽带电力线通信系统的仿真模型.以广东云浮某小区用户电表的实际采集数据作为原始数据,在500 m的四径信道模型下,分别引入了BP神经网络和Elman神经网络进行了通信质量的仿真测试.针对神经网络算法普遍存在的抗噪声性能差的缺点,提出一种基于改进VPGA优化的Elman神经网络用于电力线通信系统解映射模块的数据处理,并进行了仿真测试.实验结果表明,该算法不占用宝贵的频谱资源且实现方便,并且除去信号被噪声淹没等极端恶劣的信道环境以外,均可以显著提高宽带电力线通信系统的通信质量,降低误码率.
AbstractList 为了提高宽带电力线通信系统的通信质量,基于宽带电力线通信系统的基本原理,构建了宽带电力线通信系统的仿真模型.以广东云浮某小区用户电表的实际采集数据作为原始数据,在500 m的四径信道模型下,分别引入了BP神经网络和Elman神经网络进行了通信质量的仿真测试.针对神经网络算法普遍存在的抗噪声性能差的缺点,提出一种基于改进VPGA优化的Elman神经网络用于电力线通信系统解映射模块的数据处理,并进行了仿真测试.实验结果表明,该算法不占用宝贵的频谱资源且实现方便,并且除去信号被噪声淹没等极端恶劣的信道环境以外,均可以显著提高宽带电力线通信系统的通信质量,降低误码率.
Author 王华佑
孙云莲
易仕敏
徐冰涵
谢文旺
AuthorAffiliation 武汉大学电气与自动化学院,湖北武汉,430072%广东电网责任有限公司,广东广州,510620
AuthorAffiliation_xml – name: 武汉大学电气与自动化学院,湖北武汉,430072%广东电网责任有限公司,广东广州,510620
Author_FL XU Binghan
SUN Yunlian
YI Shimin
XIE Wenwang
WANG Huayou
Author_FL_xml – sequence: 1
  fullname: XIE Wenwang
– sequence: 2
  fullname: SUN Yunlian
– sequence: 3
  fullname: YI Shimin
– sequence: 4
  fullname: WANG Huayou
– sequence: 5
  fullname: XU Binghan
Author_xml – sequence: 1
  fullname: 谢文旺
– sequence: 2
  fullname: 孙云莲
– sequence: 3
  fullname: 易仕敏
– sequence: 4
  fullname: 王华佑
– sequence: 5
  fullname: 徐冰涵
BookMark eNotzU1LAkEcgPE5GGTmpc_Qdes_zsvOHEXMAiEj6Soz62wktlJLdPUgHSJ7Aa3QKIKimwQRlBZ-md2d-hYFdXpuv2cOpYJWYBBawLDkcu4uVzYrBSyAAk-hNOYudQjFbBZlw3BHAxDMGBcyjTait7Z96sZ342h8mvTev6bDrUopH31cxyeXxeauCuzjrZ2c2c8LO7mxg47tvcbHQzuefrcH0fQ-6T8n3VH80LHnR3Z0lbz059GMr5qhyf43g6orxWph1Smvl9YK-bITSikchon0GQFPa6W5pAR43dOEMgHGo8oXBrinjc_AUy5XRvnYCAI5KoVUpq5JBi3-sYcq8FWwXWu0DvaD32GtUd_LAZbAAQT5AU2iasE
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.7667/PSPC180406
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL A data processing algorithm for power line communication based on Elman neural network optimized by improved VPGA
EndPage 65
ExternalDocumentID jdq201906008
GrantInformation_xml – fundername: 南方电网公司科技项目资助
  funderid: (035300KK52150007)
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s998-5139f530cbbab694306dcb34580ec4af8e06cbef50ca76aeaf1e83024989aedb3
ISSN 1674-3415
IngestDate Thu May 29 04:03:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords 误码率
可变种群规模遗传算法
电力线通信
OFDM
Elman神经网络
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s998-5139f530cbbab694306dcb34580ec4af8e06cbef50ca76aeaf1e83024989aedb3
PageCount 8
ParticipantIDs wanfang_journals_jdq201906008
PublicationCentury 2000
PublicationDate 2019-03-16
PublicationDateYYYYMMDD 2019-03-16
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-16
  day: 16
PublicationDecade 2010
PublicationTitle 电力系统保护与控制
PublicationTitle_FL Power System Protection and Control
PublicationYear 2019
Publisher 武汉大学电气与自动化学院,湖北武汉,430072%广东电网责任有限公司,广东广州,510620
Publisher_xml – name: 武汉大学电气与自动化学院,湖北武汉,430072%广东电网责任有限公司,广东广州,510620
SSID ssib003155689
ssib023166999
ssib002424069
ssj0002912115
ssib051374514
ssib036435463
Score 2.2483804
Snippet 为了提高宽带电力线通信系统的通信质量,基于宽带电力线通信系统的基本原理,构建了宽带电力线通信系统的仿真模型.以广东云浮某小区用户电表的实际采集数据作为原始数据,在500...
SourceID wanfang
SourceType Aggregation Database
StartPage 58
Title 一种基于改进VPGA优化Elman神经网络的电力线通信数据处理算法
URI https://d.wanfangdata.com.cn/periodical/jdq201906008
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA-lXryIouJXpQfnGM3nZOY4ySYWQalYpbeSZGeVIiva9tJTD8WDWD-gVWlFERRvRRBBW6X_zO5G_wvfm5luQqmovYS3M2_ex-9l5yPMvLGsCwXv5Dlvu3YJo5sdcObarAiZXbpSFpEbFm6O552vXqMTN4Mr0-H0yOhsY9fSwnxxsVzc91zJQaIKZRBXPCX7H5EdCoUCoCG-8IQIw_OfYkzSgMQMNyukERERYS2ShoRnJBaqShCWkpQSDjQnKSNxRnh8a_Kyrk4IZ9iAAUHTu_gtFOWAhBSJOCYsU0SLcNeU8AQJDpIDRYCYUMkQIFnxCNSScrWFQuvJiHCVGSGJHSTATpFiKxHsynEIo0p7SniEPLFP9L2Yu1PnP6jz0SpjW2bU8ZbSIlC-gUjhAE9ACZsDFMNPkgoYhwhP2QhcSj9HV2oWsBVQ4AZWhEMJjb2ahSKc3FcsMTqrXWZZzRJhGxYrE1rKqECj2_z4gue9fFufDVV_FxQE2gVVuLiEcYOddsZUDdGh6A1ves7QJyEMcKIOeqM5R-8AAy9REripRbZoHwO8JPAxHzzxVDyAP86MRvOKaGOGbw9gDAbvooMxo8iJvijV8AagOrAnUUSGorxkP-HDEiAifFm9BPp86jmNEZZGgQ1Tp7A5BOukq6araY6nOq2_mZnpS0X2jvkRpbjrYPLGZOIyGJL2JFZXU7XZ9n2MnkNVXoBDXhTpLR3m84uZquIh8MZYh7n5hr9hGUQpr5fuPszkmzdJhK4fBaHZkYCzQI9j8kTcQT30WGdHRnsv1daqw4LdTt693ZjXTh21jpgF6bjQvcsxa2TxznHreu_rUvVxpf92q7f1ZLD67efOBvYave-v-o9fqJ6i-vCm2n5a_Xhebb-u1per1S_9RxvV1s6vpfXezrvB2qfBymb__XL17GG1-XLwee2ENZWlU8mEbS5fsefw1C34wzuh75RFkRcU72ig7bLwg5A5sgzyDpMOLQvZCZ0yj2gu844rMZUg9PY8l-3CP2mNdu915Slr3POlx5xCwuKiDKgMi1K2pQuDh8Mk99z2aWvMIDBj-ta5mWbAzvyl_qx1uP5rnrNG5x8syDFYKcwX51WIfwN9x8o1
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%80%E7%A7%8D%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9BVPGA%E4%BC%98%E5%8C%96Elman%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E7%94%B5%E5%8A%9B%E7%BA%BF%E9%80%9A%E4%BF%A1%E6%95%B0%E6%8D%AE%E5%A4%84%E7%90%86%E7%AE%97%E6%B3%95&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E8%B0%A2%E6%96%87%E6%97%BA&rft.au=%E5%AD%99%E4%BA%91%E8%8E%B2&rft.au=%E6%98%93%E4%BB%95%E6%95%8F&rft.au=%E7%8E%8B%E5%8D%8E%E4%BD%91&rft.date=2019-03-16&rft.pub=%E6%AD%A6%E6%B1%89%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E4%B8%8E%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8C%97%E6%AD%A6%E6%B1%89%2C430072%25%E5%B9%BF%E4%B8%9C%E7%94%B5%E7%BD%91%E8%B4%A3%E4%BB%BB%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E5%B9%BF%E4%B8%9C%E5%B9%BF%E5%B7%9E%2C510620&rft.issn=1674-3415&rft.volume=47&rft.issue=6&rft.spage=58&rft.epage=65&rft_id=info:doi/10.7667%2FPSPC180406&rft.externalDocID=jdq201906008
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg