一种基于改进VPGA优化Elman神经网络的电力线通信数据处理算法
为了提高宽带电力线通信系统的通信质量,基于宽带电力线通信系统的基本原理,构建了宽带电力线通信系统的仿真模型.以广东云浮某小区用户电表的实际采集数据作为原始数据,在500 m的四径信道模型下,分别引入了BP神经网络和Elman神经网络进行了通信质量的仿真测试.针对神经网络算法普遍存在的抗噪声性能差的缺点,提出一种基于改进VPGA优化的Elman神经网络用于电力线通信系统解映射模块的数据处理,并进行了仿真测试.实验结果表明,该算法不占用宝贵的频谱资源且实现方便,并且除去信号被噪声淹没等极端恶劣的信道环境以外,均可以显著提高宽带电力线通信系统的通信质量,降低误码率....
Saved in:
Published in | 电力系统保护与控制 Vol. 47; no. 6; pp. 58 - 65 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese |
Published |
武汉大学电气与自动化学院,湖北武汉,430072%广东电网责任有限公司,广东广州,510620
16.03.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-3415 |
DOI | 10.7667/PSPC180406 |
Cover
Abstract | 为了提高宽带电力线通信系统的通信质量,基于宽带电力线通信系统的基本原理,构建了宽带电力线通信系统的仿真模型.以广东云浮某小区用户电表的实际采集数据作为原始数据,在500 m的四径信道模型下,分别引入了BP神经网络和Elman神经网络进行了通信质量的仿真测试.针对神经网络算法普遍存在的抗噪声性能差的缺点,提出一种基于改进VPGA优化的Elman神经网络用于电力线通信系统解映射模块的数据处理,并进行了仿真测试.实验结果表明,该算法不占用宝贵的频谱资源且实现方便,并且除去信号被噪声淹没等极端恶劣的信道环境以外,均可以显著提高宽带电力线通信系统的通信质量,降低误码率. |
---|---|
AbstractList | 为了提高宽带电力线通信系统的通信质量,基于宽带电力线通信系统的基本原理,构建了宽带电力线通信系统的仿真模型.以广东云浮某小区用户电表的实际采集数据作为原始数据,在500 m的四径信道模型下,分别引入了BP神经网络和Elman神经网络进行了通信质量的仿真测试.针对神经网络算法普遍存在的抗噪声性能差的缺点,提出一种基于改进VPGA优化的Elman神经网络用于电力线通信系统解映射模块的数据处理,并进行了仿真测试.实验结果表明,该算法不占用宝贵的频谱资源且实现方便,并且除去信号被噪声淹没等极端恶劣的信道环境以外,均可以显著提高宽带电力线通信系统的通信质量,降低误码率. |
Author | 王华佑 孙云莲 易仕敏 徐冰涵 谢文旺 |
AuthorAffiliation | 武汉大学电气与自动化学院,湖北武汉,430072%广东电网责任有限公司,广东广州,510620 |
AuthorAffiliation_xml | – name: 武汉大学电气与自动化学院,湖北武汉,430072%广东电网责任有限公司,广东广州,510620 |
Author_FL | XU Binghan SUN Yunlian YI Shimin XIE Wenwang WANG Huayou |
Author_FL_xml | – sequence: 1 fullname: XIE Wenwang – sequence: 2 fullname: SUN Yunlian – sequence: 3 fullname: YI Shimin – sequence: 4 fullname: WANG Huayou – sequence: 5 fullname: XU Binghan |
Author_xml | – sequence: 1 fullname: 谢文旺 – sequence: 2 fullname: 孙云莲 – sequence: 3 fullname: 易仕敏 – sequence: 4 fullname: 王华佑 – sequence: 5 fullname: 徐冰涵 |
BookMark | eNotzU1LAkEcgPE5GGTmpc_Qdes_zsvOHEXMAiEj6Soz62wktlJLdPUgHSJ7Aa3QKIKimwQRlBZ-md2d-hYFdXpuv2cOpYJWYBBawLDkcu4uVzYrBSyAAk-hNOYudQjFbBZlw3BHAxDMGBcyjTait7Z96sZ342h8mvTev6bDrUopH31cxyeXxeauCuzjrZ2c2c8LO7mxg47tvcbHQzuefrcH0fQ-6T8n3VH80LHnR3Z0lbz059GMr5qhyf43g6orxWph1Smvl9YK-bITSikchon0GQFPa6W5pAR43dOEMgHGo8oXBrinjc_AUy5XRvnYCAI5KoVUpq5JBi3-sYcq8FWwXWu0DvaD32GtUd_LAZbAAQT5AU2iasE |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.7667/PSPC180406 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | A data processing algorithm for power line communication based on Elman neural network optimized by improved VPGA |
EndPage | 65 |
ExternalDocumentID | jdq201906008 |
GrantInformation_xml | – fundername: 南方电网公司科技项目资助 funderid: (035300KK52150007) |
GroupedDBID | -03 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB GROUPED_DOAJ PSX TCJ |
ID | FETCH-LOGICAL-s998-5139f530cbbab694306dcb34580ec4af8e06cbef50ca76aeaf1e83024989aedb3 |
ISSN | 1674-3415 |
IngestDate | Thu May 29 04:03:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | 误码率 可变种群规模遗传算法 电力线通信 OFDM Elman神经网络 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s998-5139f530cbbab694306dcb34580ec4af8e06cbef50ca76aeaf1e83024989aedb3 |
PageCount | 8 |
ParticipantIDs | wanfang_journals_jdq201906008 |
PublicationCentury | 2000 |
PublicationDate | 2019-03-16 |
PublicationDateYYYYMMDD | 2019-03-16 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-16 day: 16 |
PublicationDecade | 2010 |
PublicationTitle | 电力系统保护与控制 |
PublicationTitle_FL | Power System Protection and Control |
PublicationYear | 2019 |
Publisher | 武汉大学电气与自动化学院,湖北武汉,430072%广东电网责任有限公司,广东广州,510620 |
Publisher_xml | – name: 武汉大学电气与自动化学院,湖北武汉,430072%广东电网责任有限公司,广东广州,510620 |
SSID | ssib003155689 ssib023166999 ssib002424069 ssj0002912115 ssib051374514 ssib036435463 |
Score | 2.2483804 |
Snippet | 为了提高宽带电力线通信系统的通信质量,基于宽带电力线通信系统的基本原理,构建了宽带电力线通信系统的仿真模型.以广东云浮某小区用户电表的实际采集数据作为原始数据,在500... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 58 |
Title | 一种基于改进VPGA优化Elman神经网络的电力线通信数据处理算法 |
URI | https://d.wanfangdata.com.cn/periodical/jdq201906008 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA-lXryIouJXpQfnGM3nZOY4ySYWQalYpbeSZGeVIiva9tJTD8WDWD-gVWlFERRvRRBBW6X_zO5G_wvfm5luQqmovYS3M2_ex-9l5yPMvLGsCwXv5Dlvu3YJo5sdcObarAiZXbpSFpEbFm6O552vXqMTN4Mr0-H0yOhsY9fSwnxxsVzc91zJQaIKZRBXPCX7H5EdCoUCoCG-8IQIw_OfYkzSgMQMNyukERERYS2ShoRnJBaqShCWkpQSDjQnKSNxRnh8a_Kyrk4IZ9iAAUHTu_gtFOWAhBSJOCYsU0SLcNeU8AQJDpIDRYCYUMkQIFnxCNSScrWFQuvJiHCVGSGJHSTATpFiKxHsynEIo0p7SniEPLFP9L2Yu1PnP6jz0SpjW2bU8ZbSIlC-gUjhAE9ACZsDFMNPkgoYhwhP2QhcSj9HV2oWsBVQ4AZWhEMJjb2ahSKc3FcsMTqrXWZZzRJhGxYrE1rKqECj2_z4gue9fFufDVV_FxQE2gVVuLiEcYOddsZUDdGh6A1ves7QJyEMcKIOeqM5R-8AAy9REripRbZoHwO8JPAxHzzxVDyAP86MRvOKaGOGbw9gDAbvooMxo8iJvijV8AagOrAnUUSGorxkP-HDEiAifFm9BPp86jmNEZZGgQ1Tp7A5BOukq6araY6nOq2_mZnpS0X2jvkRpbjrYPLGZOIyGJL2JFZXU7XZ9n2MnkNVXoBDXhTpLR3m84uZquIh8MZYh7n5hr9hGUQpr5fuPszkmzdJhK4fBaHZkYCzQI9j8kTcQT30WGdHRnsv1daqw4LdTt693ZjXTh21jpgF6bjQvcsxa2TxznHreu_rUvVxpf92q7f1ZLD67efOBvYave-v-o9fqJ6i-vCm2n5a_Xhebb-u1per1S_9RxvV1s6vpfXezrvB2qfBymb__XL17GG1-XLwee2ENZWlU8mEbS5fsefw1C34wzuh75RFkRcU72ig7bLwg5A5sgzyDpMOLQvZCZ0yj2gu844rMZUg9PY8l-3CP2mNdu915Slr3POlx5xCwuKiDKgMi1K2pQuDh8Mk99z2aWvMIDBj-ta5mWbAzvyl_qx1uP5rnrNG5x8syDFYKcwX51WIfwN9x8o1 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%80%E7%A7%8D%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9BVPGA%E4%BC%98%E5%8C%96Elman%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E7%94%B5%E5%8A%9B%E7%BA%BF%E9%80%9A%E4%BF%A1%E6%95%B0%E6%8D%AE%E5%A4%84%E7%90%86%E7%AE%97%E6%B3%95&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E8%B0%A2%E6%96%87%E6%97%BA&rft.au=%E5%AD%99%E4%BA%91%E8%8E%B2&rft.au=%E6%98%93%E4%BB%95%E6%95%8F&rft.au=%E7%8E%8B%E5%8D%8E%E4%BD%91&rft.date=2019-03-16&rft.pub=%E6%AD%A6%E6%B1%89%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E4%B8%8E%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8C%97%E6%AD%A6%E6%B1%89%2C430072%25%E5%B9%BF%E4%B8%9C%E7%94%B5%E7%BD%91%E8%B4%A3%E4%BB%BB%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E5%B9%BF%E4%B8%9C%E5%B9%BF%E5%B7%9E%2C510620&rft.issn=1674-3415&rft.volume=47&rft.issue=6&rft.spage=58&rft.epage=65&rft_id=info:doi/10.7667%2FPSPC180406&rft.externalDocID=jdq201906008 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg |