一种基于改进VPGA优化Elman神经网络的电力线通信数据处理算法

为了提高宽带电力线通信系统的通信质量,基于宽带电力线通信系统的基本原理,构建了宽带电力线通信系统的仿真模型.以广东云浮某小区用户电表的实际采集数据作为原始数据,在500 m的四径信道模型下,分别引入了BP神经网络和Elman神经网络进行了通信质量的仿真测试.针对神经网络算法普遍存在的抗噪声性能差的缺点,提出一种基于改进VPGA优化的Elman神经网络用于电力线通信系统解映射模块的数据处理,并进行了仿真测试.实验结果表明,该算法不占用宝贵的频谱资源且实现方便,并且除去信号被噪声淹没等极端恶劣的信道环境以外,均可以显著提高宽带电力线通信系统的通信质量,降低误码率....

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 47; no. 6; pp. 58 - 65
Main Authors 谢文旺, 孙云莲, 易仕敏, 王华佑, 徐冰涵
Format Journal Article
LanguageChinese
Published 武汉大学电气与自动化学院,湖北武汉,430072%广东电网责任有限公司,广东广州,510620 16.03.2019
Subjects
Online AccessGet full text
ISSN1674-3415
DOI10.7667/PSPC180406

Cover

More Information
Summary:为了提高宽带电力线通信系统的通信质量,基于宽带电力线通信系统的基本原理,构建了宽带电力线通信系统的仿真模型.以广东云浮某小区用户电表的实际采集数据作为原始数据,在500 m的四径信道模型下,分别引入了BP神经网络和Elman神经网络进行了通信质量的仿真测试.针对神经网络算法普遍存在的抗噪声性能差的缺点,提出一种基于改进VPGA优化的Elman神经网络用于电力线通信系统解映射模块的数据处理,并进行了仿真测试.实验结果表明,该算法不占用宝贵的频谱资源且实现方便,并且除去信号被噪声淹没等极端恶劣的信道环境以外,均可以显著提高宽带电力线通信系统的通信质量,降低误码率.
ISSN:1674-3415
DOI:10.7667/PSPC180406