一种基于改进VPGA优化Elman神经网络的电力线通信数据处理算法
为了提高宽带电力线通信系统的通信质量,基于宽带电力线通信系统的基本原理,构建了宽带电力线通信系统的仿真模型.以广东云浮某小区用户电表的实际采集数据作为原始数据,在500 m的四径信道模型下,分别引入了BP神经网络和Elman神经网络进行了通信质量的仿真测试.针对神经网络算法普遍存在的抗噪声性能差的缺点,提出一种基于改进VPGA优化的Elman神经网络用于电力线通信系统解映射模块的数据处理,并进行了仿真测试.实验结果表明,该算法不占用宝贵的频谱资源且实现方便,并且除去信号被噪声淹没等极端恶劣的信道环境以外,均可以显著提高宽带电力线通信系统的通信质量,降低误码率....
Saved in:
Published in | 电力系统保护与控制 Vol. 47; no. 6; pp. 58 - 65 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese |
Published |
武汉大学电气与自动化学院,湖北武汉,430072%广东电网责任有限公司,广东广州,510620
16.03.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-3415 |
DOI | 10.7667/PSPC180406 |
Cover
Summary: | 为了提高宽带电力线通信系统的通信质量,基于宽带电力线通信系统的基本原理,构建了宽带电力线通信系统的仿真模型.以广东云浮某小区用户电表的实际采集数据作为原始数据,在500 m的四径信道模型下,分别引入了BP神经网络和Elman神经网络进行了通信质量的仿真测试.针对神经网络算法普遍存在的抗噪声性能差的缺点,提出一种基于改进VPGA优化的Elman神经网络用于电力线通信系统解映射模块的数据处理,并进行了仿真测试.实验结果表明,该算法不占用宝贵的频谱资源且实现方便,并且除去信号被噪声淹没等极端恶劣的信道环境以外,均可以显著提高宽带电力线通信系统的通信质量,降低误码率. |
---|---|
ISSN: | 1674-3415 |
DOI: | 10.7667/PSPC180406 |