Bloom Filters in Adversarial Environments
Many efficient data structures use randomness, allowing them to improve upon deterministic ones. Usually, their efficiency and/or correctness are analyzed using probabilistic tools under the assumption that the inputs and queries are independent of the internal randomness of the data structure. In t...
Saved in:
Published in | Advances in Cryptology -- CRYPTO 2015 pp. 565 - 584 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Many efficient data structures use randomness, allowing them to improve upon deterministic ones. Usually, their efficiency and/or correctness are analyzed using probabilistic tools under the assumption that the inputs and queries are independent of the internal randomness of the data structure. In this work, we consider data structures in a more robust model, which we call the adversarial model. Roughly speaking, this model allows an adversary to choose inputs and queries adaptively according to previous responses. Specifically, we consider a data structure known as “Bloom filter” and prove a tight connection between Bloom filters in this model and cryptography.
A Bloom filter represents a set S of elements approximately, by using fewer bits than a precise representation. The price for succinctness is allowing some errors: for any x∈S\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x \in S$$\end{document} it should always answer ‘Yes’, and for any x∉S\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x \notin S$$\end{document} it should answer ‘Yes’ only with small probability.
In the adversarial model, we consider both efficient adversaries (that run in polynomial time) and computationally unbounded adversaries that are only bounded in the amount of queries they can make. For computationally bounded adversaries, we show that non-trivial (memory-wise) Bloom filters exist if and only if one-way functions exist. For unbounded adversaries we show that there exists a Bloom filter for sets of size n and error ε\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon $$\end{document}, that is secure against t queries and uses only O(nlog1ε+t)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$O(n \log {\frac{1}{\varepsilon }}+t)$$\end{document} bits of memory. In comparison, nlog1ε\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n\log {\frac{1}{\varepsilon }}$$\end{document} is the best possible under a non-adaptive adversary. |
---|---|
Bibliography: | M. Naor—Incumbent of the Judith Kleeman Professorial Chair. E. Yogev—Supported in part by a grant from the I-CORE Program of the Planning and Budgeting Committee, the Israel Science Foundation, BSF and the Israeli Ministry of Science and Technology. |
ISBN: | 3662479990 9783662479995 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-662-48000-7_28 |