Additive Combinatorics and Discrete Logarithm Based Range Protocols

We show how to express an arbitrary integer interval \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{I} = [0,...

Full description

Saved in:
Bibliographic Details
Published inInformation Security and Privacy pp. 336 - 351
Main Authors Chaabouni, Rafik, Lipmaa, Helger, Shelat, Abhi
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2010
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We show how to express an arbitrary integer interval \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{I} = [0, H]$\end{document} as a sumset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{I} = \sum_{i=1}^\ell G_i * [0, u - 1] + [0, H']$\end{document} of smaller integer intervals for some small values ℓ, u, and H′ < u − 1, where b * A = {ba : a ∈ A} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A + B = \{a + b : a \in A \land b \in B\}$\end{document}. We show how to derive such expression of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{I}$\end{document} as a sumset for any value of 1 < u < H, and in particular, how the coefficients Gi can be found by using a nontrivial but efficient algorithm. This result may be interesting by itself in the context of additive combinatorics. Given the sumset-representation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{I}$\end{document}, we show how to decrease both the communication complexity and the computational complexity of the recent pairing-based range proof of Camenisch, Chaabouni and shelat from ASIACRYPT 2008 by a factor of 2. Our results are important in applications like e-voting where a voting server has to verify thousands of proofs of e-vote correctness per hour. Therefore, our new result in additive combinatorics has direct relevance in practice.
ISBN:3642140807
9783642140808
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-642-14081-5_21