Additive Combinatorics and Discrete Logarithm Based Range Protocols
We show how to express an arbitrary integer interval \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{I} = [0,...
Saved in:
Published in | Information Security and Privacy pp. 336 - 351 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2010
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We show how to express an arbitrary integer interval \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{I} = [0, H]$\end{document} as a sumset \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{I} = \sum_{i=1}^\ell G_i * [0, u - 1] + [0, H']$\end{document} of smaller integer intervals for some small values ℓ, u, and H′ < u − 1, where b * A = {ba : a ∈ A} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$A + B = \{a + b : a \in A \land b \in B\}$\end{document}. We show how to derive such expression of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{I}$\end{document} as a sumset for any value of 1 < u < H, and in particular, how the coefficients Gi can be found by using a nontrivial but efficient algorithm. This result may be interesting by itself in the context of additive combinatorics. Given the sumset-representation of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{I}$\end{document}, we show how to decrease both the communication complexity and the computational complexity of the recent pairing-based range proof of Camenisch, Chaabouni and shelat from ASIACRYPT 2008 by a factor of 2. Our results are important in applications like e-voting where a voting server has to verify thousands of proofs of e-vote correctness per hour. Therefore, our new result in additive combinatorics has direct relevance in practice. |
---|---|
ISBN: | 3642140807 9783642140808 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-642-14081-5_21 |