A Theory and Algorithms for Combinatorial Reoptimization

Many real-life applications involve systems that change dynamically over time. Thus, throughout the continuous operation of such a system, it is required to compute solutions for new problem instances, derived from previous instances. Since the transition from one solution to another incurs some cos...

Full description

Saved in:
Bibliographic Details
Published inLATIN 2012: Theoretical Informatics pp. 618 - 630
Main Authors Shachnai, Hadas, Tamir, Gal, Tamir, Tami
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Many real-life applications involve systems that change dynamically over time. Thus, throughout the continuous operation of such a system, it is required to compute solutions for new problem instances, derived from previous instances. Since the transition from one solution to another incurs some cost, a natural goal is to have the solution for the new instance close to the original one (under a certain distance measure). In this paper we develop a general model for combinatorial reoptimization, encompassing classical objective functions as well as the goal of minimizing the transition cost from one solution to the other. Formally, we say that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal A}$\end{document} is an (r, ρ)-reapproximation algorithm if it achieves a ρ-approximation for the optimization problem, while paying a transition cost that is at most r times the minimum required for solving the problem optimally. When ρ = 1 we get an (r,1)-reoptimization algorithm. Using our model we derive reoptimization and reapproximation algorithms for several important classes of optimization problems. This includes fully polynomial time reapproximation schemes for DP-benevolent problems, a class introduced by Woeginger (Proc. Tenth ACM-SIAM Symposium on Discrete Algorithms, 1999), reapproximation algorithms for metric Facility Location problems, and (1,1)-reoptimization algorithm for polynomially solvable subset-selection problems. Thus, we distinguish here for the first time between classes of reoptimization problems, by their hardness status with respect to minimizing transition costs while guaranteeing a good approximation for the underlying optimization problem.
Bibliography:This research is supported by the Israel Science Foundation (grant number 1574/10), and by the Ministry of Trade and Industry MAGNET program through the NEGEV Consortium (www.negev-initiative.org).
ISBN:3642293433
9783642293436
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-642-29344-3_52