A New Mechanism for Negotiations in Multi-Agent Systems Based on ARTMAP Artificial Neural Network

Any rational agent involving in a multi-agent systems negotiation tries to optimize the negotiation outcome based on its interests or utility function. Negotiations in multi-agent systems are usually complex, and a lot of variables exist which affect the agents’ decisions. This becomes more visible...

Full description

Saved in:
Bibliographic Details
Published inAgent and Multi-Agent Systems: Technologies and Applications pp. 311 - 320
Main Authors Beheshti, R., Mozayani, N.
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2011
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Any rational agent involving in a multi-agent systems negotiation tries to optimize the negotiation outcome based on its interests or utility function. Negotiations in multi-agent systems are usually complex, and a lot of variables exist which affect the agents’ decisions. This becomes more visible in competitive or multi-issue types of negotiations. So, the negotiator agents need an efficient mechanism to do well. The key solution to this type of problems is employing a powerful and operative learning method. An agent tries to learn information it obtains from its environment in order to make the best decisions during the negotiations. In real-world multi-agent negotiations, the main source of usable data is the negotiators’ behaviors. So, a good learning approach should be able to extract the buried information in the ‘negotiation history’. In this work, we used an ARTMAP artificial neural network as a powerful and efficient learning tool. The main role of this component is to predict other agents’ actions/offers in the next rounds of negotiation. When an agent finds out what are the most possible offers which will be proposed, it can predict the outcomes of its decisions. In addition, a new method to apply this information and determine next moves in a negotiation is proposed. The obtained experimental results show that this method can be used effectively in real multi-agent negotiations.
Bibliography:This research was supported by Iran Research Institute for ICT (ITRC).
ISBN:9783642219993
3642219993
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-642-22000-5_33