A New Mechanism for Negotiations in Multi-Agent Systems Based on ARTMAP Artificial Neural Network
Any rational agent involving in a multi-agent systems negotiation tries to optimize the negotiation outcome based on its interests or utility function. Negotiations in multi-agent systems are usually complex, and a lot of variables exist which affect the agents’ decisions. This becomes more visible...
Saved in:
Published in | Agent and Multi-Agent Systems: Technologies and Applications pp. 311 - 320 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2011
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Any rational agent involving in a multi-agent systems negotiation tries to optimize the negotiation outcome based on its interests or utility function. Negotiations in multi-agent systems are usually complex, and a lot of variables exist which affect the agents’ decisions. This becomes more visible in competitive or multi-issue types of negotiations. So, the negotiator agents need an efficient mechanism to do well. The key solution to this type of problems is employing a powerful and operative learning method. An agent tries to learn information it obtains from its environment in order to make the best decisions during the negotiations. In real-world multi-agent negotiations, the main source of usable data is the negotiators’ behaviors. So, a good learning approach should be able to extract the buried information in the ‘negotiation history’. In this work, we used an ARTMAP artificial neural network as a powerful and efficient learning tool. The main role of this component is to predict other agents’ actions/offers in the next rounds of negotiation. When an agent finds out what are the most possible offers which will be proposed, it can predict the outcomes of its decisions. In addition, a new method to apply this information and determine next moves in a negotiation is proposed. The obtained experimental results show that this method can be used effectively in real multi-agent negotiations. |
---|---|
Bibliography: | This research was supported by Iran Research Institute for ICT (ITRC). |
ISBN: | 9783642219993 3642219993 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-642-22000-5_33 |