Comparative Study of BSO and GA for the Optimizing Energy in Ambient Intelligence
One of the concerns of humanity today is developing strategies for saving energy, because we need to reduce energetic costs and promote economical, political and environmental sustainability. As we have mentioned before, in recent times one of the main priorities is energy management. The goal in th...
Saved in:
Published in | Advances in Soft Computing pp. 177 - 188 |
---|---|
Main Authors | , , , , |
Format | Book Chapter |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | One of the concerns of humanity today is developing strategies for saving energy, because we need to reduce energetic costs and promote economical, political and environmental sustainability. As we have mentioned before, in recent times one of the main priorities is energy management. The goal in this project is to develop a system that will be able to find optimal configurations in energy savings through management light. In this paper a comparison between Genetic Algorithms (GA) and Bee Swarm Optimization (BSO) is made. These two strategies are focus on lights management, as the main scenario, and taking into account the activity of the users, size of area, quantity of lights, and power. It was found that the GA provides an optimal configuration (according to the user’s needs), and this result was consistent with Wilcoxon’s Test. |
---|---|
ISBN: | 9783642253294 3642253296 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-642-25330-0_16 |