A Geometric Approach to Graph Isomorphism

We present an integer linear program (IP), for the Graph Isomorphism (GI) problem, which has non-empty feasible solution if and only if the input pair of graphs are isomorphic. We study the polytope of the convex hull of the solution points of IP, denoted by \documentclass[12pt]{minimal} \usepackage...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms and Computation pp. 674 - 685
Main Authors Aurora, Pawan, Mehta, Shashank K.
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 2014
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present an integer linear program (IP), for the Graph Isomorphism (GI) problem, which has non-empty feasible solution if and only if the input pair of graphs are isomorphic. We study the polytope of the convex hull of the solution points of IP, denoted by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{B}^{[2]}$$\end{document}. Exponentially many facets of this polytope are known. We show that in case of non-isomorphic pairs of graphs if a feasible solution exists for the linear program relaxation (LP) of the IP, then it violates a unique facet of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{B}^{[2]}$$\end{document}. We present an algorithm for GI based on the solution of LP and prove that it detects non-isomorphism in polynomial time if the solution of the LP violates any of the known facets.
ISBN:3319130749
9783319130743
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-13075-0_53