Nearly Optimal Private Convolution

We study algorithms for computing the convolution of a private input x with a public input h, while satisfying the guarantees of (ε, δ)-differential privacy. Convolution is a fundamental operation, intimately related to Fourier Transforms. In our setting, the private input may represent a time serie...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms – ESA 2013 pp. 445 - 456
Main Authors Fawaz, Nadia, Muthukrishnan, S., Nikolov, Aleksandar
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study algorithms for computing the convolution of a private input x with a public input h, while satisfying the guarantees of (ε, δ)-differential privacy. Convolution is a fundamental operation, intimately related to Fourier Transforms. In our setting, the private input may represent a time series of sensitive events or a histogram of a database of confidential personal information. Convolution then captures important primitives including linear filtering, which is an essential tool in time series analysis, and aggregation queries on projections of the data. We give an algorithm for computing convolutions which satisfies (ε, δ)-differentially privacy and is nearly optimal for every public h, i.e. is instance optimal with respect to the public input. We prove optimality via spectral lower bounds on the hereditary discrepancy of convolution matrices. Our algorithm is very efficient – it is essentially no more computationally expensive than a Fast Fourier Transform.
ISBN:9783642404498
3642404499
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-642-40450-4_38