Towards a Unified Supervised Approach for Ranking Triples of Type-Like Relations
Knowledge bases play a crucial role in modern search engines and provide users with information about entities. A knowledge base may contain many facts (i.e., RDF triples) about an entity, but only a handful of them are of significance for a searcher. Identifying and ranking these RDF triples is ess...
Saved in:
Published in | Advances in Information Retrieval pp. 707 - 714 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Cham
Springer International Publishing
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Knowledge bases play a crucial role in modern search engines and provide users with information about entities. A knowledge base may contain many facts (i.e., RDF triples) about an entity, but only a handful of them are of significance for a searcher. Identifying and ranking these RDF triples is essential for various applications of search engines, such as entity ranking and summarization. In this paper, we present the first effort towards a unified supervised approach to rank triples from various type-like relations in knowledge bases. We evaluate our approach using the recently released test collections from the WSDM Cup 2017 and demonstrate the effectiveness of the proposed approach despite the fact that no relation-specific feature is used. |
---|---|
ISBN: | 9783319769400 3319769405 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-76941-7_66 |