Inserting an Edge into a Geometric Embedding

The algorithm to insert an edge e in linear time into a planar graph G with a minimal number of crossings on e [10], is a helpful tool for designing heuristics that minimize edge crossings in drawings of general graphs. Unfortunately, some graphs do not have a geometric embedding \documentclass[12pt...

Full description

Saved in:
Bibliographic Details
Published inGraph Drawing and Network Visualization pp. 402 - 415
Main Authors Radermacher, Marcel, Rutter, Ignaz
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing
SeriesLecture Notes in Computer Science
Online AccessGet full text

Cover

Loading…
More Information
Summary:The algorithm to insert an edge e in linear time into a planar graph G with a minimal number of crossings on e [10], is a helpful tool for designing heuristics that minimize edge crossings in drawings of general graphs. Unfortunately, some graphs do not have a geometric embedding \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma $$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma +e$$\end{document} has the same number of crossings as the embedding \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G+e$$\end{document}. This motivates the study of the computational complexity of the following problem: Given a combinatorially embedded graph G, compute a geometric embedding \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma $$\end{document} that has the same combinatorial embedding as G and that minimizes the crossings of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma +e$$\end{document}. We give polynomial-time algorithms for special cases and prove that the general problem is fixed-parameter tractable in the number of crossings. Moreover, we show how to approximate the number of crossings by a factor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varDelta -2)$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document} is the maximum vertex degree of G.
Bibliography:Work was partially supported by grant WA 654/21-1 of the German Research Foundation (DFG).
ISBN:9783030044138
3030044130
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-04414-5_29