Fast Computation on Encrypted Polynomials and Applications

In this paper, we explore fast algorithms for computing on encrypted polynomials. More specifically, we describe efficient algorithms for computing the Discrete Fourier Transform, multiplication, division, and multipoint evaluation on encrypted polynomials. The encryption scheme we use needs to be a...

Full description

Saved in:
Bibliographic Details
Published inCryptology and Network Security pp. 234 - 254
Main Author Mohassel, Payman
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we explore fast algorithms for computing on encrypted polynomials. More specifically, we describe efficient algorithms for computing the Discrete Fourier Transform, multiplication, division, and multipoint evaluation on encrypted polynomials. The encryption scheme we use needs to be additively homomorphic, with a plaintext domain that contains appropriate primitive roots of unity. We show that some modifications to the key generation setups and working with variants of the original hardness assumptions one can adapt the existing homomorphic encryption schemes to work in our algorithms. The above set of algorithms on encrypted polynomials are useful building blocks for the design of secure computation protocols. We demonstrate their usefulness by utilizing them to solve two problems from the literature, namely the oblivious polynomial evaluation (OPE) and the private set intersection but expect the techniques to be applicable to other problems as well.
ISBN:9783642255120
3642255124
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-642-25513-7_17