An Approach to Distance Estimation with Stereo Vision Using Address-Event-Representation
Image processing in digital computer systems usually considers the visual information as a sequence of frames. These frames are from cameras that capture reality for a short period of time. They are renewed and transmitted at a rate of 25-30 fps (typical real-time scenario). Digital video processing...
Saved in:
Published in | Neural Information Processing pp. 190 - 198 |
---|---|
Main Authors | , , , , , , , |
Format | Book Chapter |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2011
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Image processing in digital computer systems usually considers the visual information as a sequence of frames. These frames are from cameras that capture reality for a short period of time. They are renewed and transmitted at a rate of 25-30 fps (typical real-time scenario). Digital video processing has to process each frame in order to obtain a result or detect a feature. In stereo vision, existing algorithms used for distance estimation use frames from two digital cameras and process them pixel by pixel to obtain similarities and differences from both frames; after that, depending on the scene and the features extracted, an estimate of the distance of the different objects of the scene is calculated. Spike-based processing is a relatively new approach that implements the processing by manipulating spikes one by one at the time they are transmitted, like a human brain. The mammal nervous system is able to solve much more complex problems, such as visual recognition by manipulating neuron spikes. The spike-based philosophy for visual information processing based on the neuro-inspired Address-Event-Representation (AER) is achieving nowadays very high performances. In this work we propose a two-DVS-retina system, composed of other elements in a chain, which allow us to obtain a distance estimation of the moving objects in a close environment. We will analyze each element of this chain and propose a Multi Hold&Fire algorithm that obtains the differences between both retinas. |
---|---|
ISBN: | 364224954X 9783642249549 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-642-24955-6_23 |