Dynamic Range Selection in Linear Space
Given a set S of n points in the plane, we consider the problem of answering range selection queries on S: that is, given an arbitrary x-range Q and an integer k > 0, return the k-th smallest y-coordinate from the set of points that have x-coordinates in Q. We present a linear space data structur...
Saved in:
Published in | Algorithms and Computation pp. 160 - 169 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2011
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Given a set S of n points in the plane, we consider the problem of answering range selection queries on S: that is, given an arbitrary x-range Q and an integer k > 0, return the k-th smallest y-coordinate from the set of points that have x-coordinates in Q. We present a linear space data structure that maintains a dynamic set of n points in the plane with real coordinates, and supports range selection queries in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$O((\lg n / \lg \lg n)^2)$\end{document} time, as well as insertions and deletions in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$O((\lg n / \lg \lg n)^2)$\end{document} amortized time. The space usage of this data structure is an \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\Theta(\lg n / \lg \lg n)$\end{document} factor improvement over the previous best result, while maintaining asymptotically matching query and update times. We also present a succinct data structure that supports range selection queries on a dynamic array of n values drawn from a bounded universe. |
---|---|
Bibliography: | This work was supported by NSERC and the Canada Research Chairs Program. |
ISBN: | 3642255906 9783642255908 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-642-25591-5_18 |