Towards Efficient Forward Propagation on Resource-Constrained Systems

In this work we present key elements of DeepChip, a framework that bridges recent trends in machine learning with applicable forward propagation on resource-constrained devices. Main objective of this work is to reduce compute and memory requirements by removing redundancy from neural networks. Deep...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning and Knowledge Discovery in Databases pp. 426 - 442
Main Authors Schindler, Günther, Zöhrer, Matthias, Pernkopf, Franz, Fröning, Holger
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing
SeriesLecture Notes in Computer Science
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work we present key elements of DeepChip, a framework that bridges recent trends in machine learning with applicable forward propagation on resource-constrained devices. Main objective of this work is to reduce compute and memory requirements by removing redundancy from neural networks. DeepChip features a flexible quantizer to reduce the bit width of activations to 8-bit fixed-point and weights to an asymmetric ternary representation. In combination with novel algorithms and data compression we leverage reduced precision and sparsity for efficient forward propagation on a wide range of processor architectures. We validate our approach on a set of different convolutional neural networks and datasets: ConvNet on SVHN, ResNet-44 on CIFAR10 and AlexNet on ImageNet. Compared to single-precision floating point, memory requirements can be compressed by a factor of 43, 22 and 10 and computations accelerated by a factor of 5.2, 2.8 and 2.0 on a mobile processor without a loss in classification accuracy. DeepChip allows trading accuracy for efficiency, and for instance tolerating about 2% loss in classification accuracy further reduces memory requirements by a factor of 88, 29 and 13, and speeds up computations by a factor of 6.0, 4.3 and 5.0. Code related to this paper is available at: https://github.com/UniHD-CEG/ECML2018.
ISBN:9783030109240
3030109240
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-10925-7_26