Fast and Exact Nearest Neighbor Search in Hamming Space on Full-Text Search Engines
A growing interest has been witnessed recently from both academia and industry in building nearest neighbor search (NNS) solutions on top of full-text search engines. Compared with other NNS systems, such solutions are capable of effectively reducing main memory consumption, coherently supporting mu...
Saved in:
Published in | Similarity Search and Applications pp. 49 - 56 |
---|---|
Main Authors | , , , , |
Format | Book Chapter |
Language | English |
Published |
Cham
Springer International Publishing
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A growing interest has been witnessed recently from both academia and industry in building nearest neighbor search (NNS) solutions on top of full-text search engines. Compared with other NNS systems, such solutions are capable of effectively reducing main memory consumption, coherently supporting multi-model search and being immediately ready for production deployment. In this paper, we continue the journey to explore specifically how to empower full-text search engines with fast and exact NNS in Hamming space (i.e., the set of binary codes). By revisiting three techniques (bit operation, subs-code filtering and data preprocessing with permutation) in information retrieval literature, we develop a novel engineering solution for full-text search engines to efficiently accomplish this special but important NNS task. In the experiment, we show that our proposed approach enables full-text search engines to achieve significant speed-ups over its state-of-the-art term match approach for NNS within binary codes. |
---|---|
ISBN: | 3030320464 9783030320461 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-030-32047-8_5 |