Substructural Proofs as Automata

We present subsingleton logic as a very small fragment of linear logic containing only \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \...

Full description

Saved in:
Bibliographic Details
Published inProgramming Languages and Systems pp. 3 - 22
Main Authors DeYoung, Henry, Pfenning, Frank
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present subsingleton logic as a very small fragment of linear logic containing only \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\oplus $$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {1}$$\end{document}, least fixed points and allowing circular proofs. We show that cut-free proofs in this logic are in a Curry–Howard correspondence with subsequential finite state transducers. Constructions on finite state automata and transducers such as composition, complement, and inverse homomorphism can then be realized uniformly simply by cut and cut elimination. If we freely allow cuts in the proofs, they correspond to a well-typed class of machines we call linear communicating automata, which can also be seen as a generalization of Turing machines with multiple, concurrently operating read/write heads.
ISBN:9783319479576
3319479571
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-47958-3_1