Colocation, Colocation, Colocation: Optimizing Placement in the Hybrid Cloud
Today’s enterprise customer has to decide how to distribute her services among multiple clouds - between on-premise private clouds and public clouds - so as to optimize different objectives, e.g., minimizing bottleneck resource usage, maintenance downtime, bandwidth usage or privacy leakage. These u...
Saved in:
Published in | Algorithmic Aspects of Cloud Computing pp. 25 - 45 |
---|---|
Main Authors | , , , , , |
Format | Book Chapter |
Language | English |
Published |
Cham
Springer International Publishing
28.04.2019
|
Series | Lecture Notes in Computer Science |
Online Access | Get full text |
Cover
Loading…
Summary: | Today’s enterprise customer has to decide how to distribute her services among multiple clouds - between on-premise private clouds and public clouds - so as to optimize different objectives, e.g., minimizing bottleneck resource usage, maintenance downtime, bandwidth usage or privacy leakage. These use cases motivate a general formulation, the uncapacitated (A defining feature of clouds is their elasticity or ability to scale with load) multidimensional load assignment problem - VITA(F) (Vectors-In-Total Assignment): the input consists of n, d-dimensional load vectors \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\bar{V} = \{\bar{V}_i | 1\le i \le n\}$$\end{document}, m cloud buckets \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B = \{B_j | 1\le j \le m\}$$\end{document} with associated weights \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$w_j$$\end{document} and assignment constraints represented by a bipartite graph \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G=(\bar{V} \cup B, E \subseteq \bar{V} \times B)$$\end{document} restricting load \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\bar{V}_i$$\end{document} to be assigned only to buckets \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B_j$$\end{document} with which it shares an edge (In a slight abuse of notation, we let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B_j$$\end{document} also denote the subset of vectors assigned to bucket \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B_j$$\end{document}). F can be any operator mapping a vector to a scalar, e.g., \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\max $$\end{document}, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\min $$\end{document}, etc. The objective is to partition the vectors among the buckets, respecting assignment constraints, so as to achieve \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} \min [ \sum _j w_j*F (\sum _{\bar{V}_i \in B_j} \bar{V}_i)] \end{aligned}$$\end{document}We characterize the complexity of VITA\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\min )$$\end{document}, VITA\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\max )$$\end{document}, VITA\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\max - \min )$$\end{document} and VITA\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(2^{nd}\max )$$\end{document} by providing hardness results and approximation algorithms, LP-Approx involving clever rounding of carefully crafted linear programs. Employing real-world traces from Nutanix, a leading hybrid cloud provider, we perform a comprehensive comparative evaluation versus three natural heuristics - Conservative, Greedy and Local-Search. Our main finding is that on real-world workloads too, LP-Approx outperforms the heuristics, in terms of quality, in all but one case. |
---|---|
ISBN: | 9783030197582 3030197581 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-030-19759-9_3 |