Binary Positive Semidefinite Matrices and Associated Integer Polytopes
We consider the positive semidefinite (psd) matrices with binary entries. We give a characterisation of such matrices, along with a graphical representation. We then move on to consider the associated integer polytopes. Several important and well-known integer polytopes — the cut, boolean quadric, m...
Saved in:
Published in | Integer Programming and Combinatorial Optimization pp. 125 - 139 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We consider the positive semidefinite (psd) matrices with binary entries. We give a characterisation of such matrices, along with a graphical representation. We then move on to consider the associated integer polytopes. Several important and well-known integer polytopes — the cut, boolean quadric, multicut and clique partitioning polytopes — are shown to arise as projections of binary psd polytopes. Finally, we present various valid inequalities for binary psd polytopes, and show how they relate to inequalities known for the simpler polytopes mentioned. Along the way, we answer an open question in the literature on the max-cut problem, by showing that the so-called k-gonal inequalities define a polytope. |
---|---|
ISBN: | 3540688862 9783540688860 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-68891-4_9 |