Cryptanalysis of Variants of RSA with Multiple Small Secret Exponents
In this paper, we analyze the security of two variants of the RSA public key cryptosystem where multiple encryption and decryption exponents are used with a common modulus. For the most well known variant, CRT-RSA, assume that n encryption and decryption exponents (el,dpl,dql) $$(e_l,d_{p_l},d_{q_l}...
Saved in:
Published in | Progress in Cryptology -- INDOCRYPT 2015 pp. 105 - 123 |
---|---|
Main Authors | , , , , , |
Format | Book Chapter |
Language | English |
Published |
Cham
Springer International Publishing
2015
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 3319266160 9783319266169 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-319-26617-6_6 |
Cover
Summary: | In this paper, we analyze the security of two variants of the RSA public key cryptosystem where multiple encryption and decryption exponents are used with a common modulus. For the most well known variant, CRT-RSA, assume that n encryption and decryption exponents (el,dpl,dql) $$(e_l,d_{p_l},d_{q_l})$$ , where l=1,⋯,n $$l=1,\cdots ,n$$ , are used with a common CRT-RSA modulus N. By utilizing a Minkowski sum based lattice construction and combining several modular equations which share a common variable, we prove that one can factor N when dpl,dql<N2n-38n+2 $$d_{p_l},d_{q_l}<N^{\frac{2n-3}{8n+2}}$$ for all l=1,⋯,n $$l=1,\cdots ,n$$ . We further improve this bound to dpl(ordql)<N9n-1424n+8 $$d_{p_l}(\mathrm {or}\,d_{q_l})<N^{\frac{9n-14}{24n+8}}$$ for all l=1,⋯,n $$l=1,\cdots ,n$$ . Moreover, our experiments do better than previous works by Jochemsz-May (Crypto 2007) and Herrmann-May (PKC 2010) when multiple exponents are used. For Takagi’s variant of RSA, assume that n key pairs (el,dl) $$(e_l,d_l)$$ for l=1,⋯,n $$l=1,\cdots ,n$$ are available for a common modulus N=prq $$N=p^rq$$ where r≥2 $$r\ge 2$$ . By solving several simultaneous modular univariate linear equations, we show that when dl<N(r-1r+1)n+1n $$d_l<N^{(\frac{r-1}{r+1})^{\frac{n+1}{n}}}$$ , for all l=1,⋯,n $$l=1,\cdots ,n$$ , one can factor the common modulus N. |
---|---|
Bibliography: | Original Abstract: In this paper, we analyze the security of two variants of the RSA public key cryptosystem where multiple encryption and decryption exponents are used with a common modulus. For the most well known variant, CRT-RSA, assume that n encryption and decryption exponents (el,dpl,dql)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(e_l,d_{p_l},d_{q_l})$$\end{document}, where l=1,⋯,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l=1,\cdots ,n$$\end{document}, are used with a common CRT-RSA modulus N. By utilizing a Minkowski sum based lattice construction and combining several modular equations which share a common variable, we prove that one can factor N when dpl,dql<N2n-38n+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{p_l},d_{q_l}<N^{\frac{2n-3}{8n+2}}$$\end{document} for all l=1,⋯,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l=1,\cdots ,n$$\end{document}. We further improve this bound to dpl(ordql)<N9n-1424n+8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{p_l}(\mathrm {or}\,d_{q_l})<N^{\frac{9n-14}{24n+8}}$$\end{document} for all l=1,⋯,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l=1,\cdots ,n$$\end{document}. Moreover, our experiments do better than previous works by Jochemsz-May (Crypto 2007) and Herrmann-May (PKC 2010) when multiple exponents are used. For Takagi’s variant of RSA, assume that n key pairs (el,dl)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(e_l,d_l)$$\end{document} for l=1,⋯,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l=1,\cdots ,n$$\end{document} are available for a common modulus N=prq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=p^rq$$\end{document} where r≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 2$$\end{document}. By solving several simultaneous modular univariate linear equations, we show that when dl<N(r-1r+1)n+1n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_l<N^{(\frac{r-1}{r+1})^{\frac{n+1}{n}}}$$\end{document}, for all l=1,⋯,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l=1,\cdots ,n$$\end{document}, one can factor the common modulus N. |
ISBN: | 3319266160 9783319266169 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-26617-6_6 |