Registration of 3D Angiographic and X-Ray Images Using Sequential Monte Carlo Sampling
Digital subtraction angiography (DSA) reconstructions and 3D Magnetic Resonance Angiography (MRA) are the modalities of choice for diagnosis of vascular diseases. However, when it comes to treatment through an endovascular intervention, only two dimensional lower resolution information such as angio...
Saved in:
Published in | Computer Vision for Biomedical Image Applications pp. 427 - 436 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2005
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Digital subtraction angiography (DSA) reconstructions and 3D Magnetic Resonance Angiography (MRA) are the modalities of choice for diagnosis of vascular diseases. However, when it comes to treatment through an endovascular intervention, only two dimensional lower resolution information such as angiograms or fluoroscopic images are usually available. Overlaying the pre-operative information from high resoluion acquisition onto the images acquired during intervention greatly helps physician in performing the operation. We propose to register pre-operative DSA or MRS with intra-operative images to bring the two data sets into a single coordinate frame. The method uses the vascular structure, which is present and visible from most of DSA, MRA and x-ray angiogram and fluoroscopic images, to determine the registration parameters. A robust multiple hypothesis framework is built to minimize a fitness measure between the 3D volume and the 2D projection. The measure is based on the distance map computed from the vascular segmentation. Particle Filters are used to resample the hypothesis, and direct them toward the feature space’s zones of maximum likelihood. Promising experimental results demonstrate the potentials of the method. |
---|---|
ISBN: | 9783540294115 3540294112 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11569541_43 |