Novel luminescent Eu3+-indandionate complexes containing heterobiaryl ligands
Novel Ln3+-indandionate complexes of formulas [Ln(aind)3L(H2O)] and [Ln(bind)3L]∙H2O (L: 1,10-phenanthroline (phen) or 4,7-dimethyl-1,10-phenanthroline (dmphen), Ln3+: Eu3+ or Gd3+, aind: 2-acetyl-1,3-indandionate and bind: 2-benzoyl-1,3-indandionate) were synthesized and characterized by elemental...
Saved in:
Published in | Journal of the Brazilian Chemical Society Vol. 25; no. 11; pp. 2080 - 2087 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English Portuguese |
Published |
Sociedade Brasileira de Química
01.11.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Novel Ln3+-indandionate complexes of formulas [Ln(aind)3L(H2O)] and [Ln(bind)3L]∙H2O (L: 1,10-phenanthroline (phen) or 4,7-dimethyl-1,10-phenanthroline (dmphen), Ln3+: Eu3+ or Gd3+, aind: 2-acetyl-1,3-indandionate and bind: 2-benzoyl-1,3-indandionate) were synthesized and characterized by elemental analysis, infrared spectroscopy, and thermogravimetric analyses. The characterization data are consistent with the presence of a water lattice molecule in the [Ln(bind)3L]∙H2O compounds. However, the data also suggest that the water acts as a coordinated molecule in the [Ln(aind)3L(H2O)] ones. Theoretical geometries of the Eu3+-complexes have been optimized via the SPARKLE/AM1 Model for lanthanide complexes that are consistent with their luminescence experimental data. The photoluminescence properties of the Eu3+-compounds have been discussed in terms of experimental intensity parameters (Ω2 and Ω4), radiative (Arad), and non-radiative (Anrad) spontaneous emission coefficients. The higher values of emission quantum efficiency (η) of the [Eu(bind)3L]∙H2O compounds reflect the absence of luminescence-quenching water molecule in their first coordination spheres. |
---|---|
ISSN: | 1678-4790 |
DOI: | 10.5935/0103-5053.20140197 |