Biomimetic Knee Design to Improve Joint Torque and Life for Bipedal Robotics
This paper details the design, construction, and performance analysis of a biologically inspired knee joint for use in bipedal robotics. The design copies the condylar surfaces of the distal end of the femur and utilizes the same crossed four-bar linkage design the human knee uses. The joint include...
Saved in:
Published in | Towards Autonomous Robotic Systems pp. 91 - 102 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Cham
Springer International Publishing
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper details the design, construction, and performance analysis of a biologically inspired knee joint for use in bipedal robotics. The design copies the condylar surfaces of the distal end of the femur and utilizes the same crossed four-bar linkage design the human knee uses. The joint includes a changing center of rotation, a screw-home mechanism, and patella; these are characteristics of the knee that are desirable to copy for bipedal robotics. The design was calculated to have an average sliding to rolling ratio of 0.079, a maximum moment arm of 2.7 in and a range of motion of 151°. This should reduce wear and perform similar to the human knee. Prototypes of the joint have been created to test these predicted properties. |
---|---|
ISBN: | 9783319967271 3319967274 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-96728-8_8 |