On the NP-hardness of approximating ordering-constraint satisfaction problems

We show improved NPNP-hardness of approximating Ordering-Constraint Satisfaction Problems (OCSPs). For the two most well-studied OCSPs, Maximum Acyclic Subgraph and Maximum Betweenness, we prove NPNP-hard approximation factors of 14/15+ε14/15+ε and 1/2+ε1/2+ε. When it is hard to approximate an OCSP...

Full description

Saved in:
Bibliographic Details
Published inTheory of computing (Chicago, Ill.) Vol. 11; p. 257
Main Authors Austrin, Per, Manokaran, Rajsekar, Wenner, Cenny
Format Journal Article
LanguageEnglish
Published 2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We show improved NPNP-hardness of approximating Ordering-Constraint Satisfaction Problems (OCSPs). For the two most well-studied OCSPs, Maximum Acyclic Subgraph and Maximum Betweenness, we prove NPNP-hard approximation factors of 14/15+ε14/15+ε and 1/2+ε1/2+ε. When it is hard to approximate an OCSP by a constant better than taking a uniformly-at-random ordering, then the OCSP is said to be approximation resistant. We show that the Maximum Non-Betweenness Problem is approximation resistant and that there are width-mm approximation-resistant OCSPs accepting only a fraction 1/(m/2)! of assignments. These results provide the first examples of approximation-resistant OCSPs subject only to P≠NP.
ISSN:1557-2862
1557-2862
DOI:10.4086/toc.2015.v011a010