Room-Temperature Energy-Sampling K beta X-ray Emission Spectroscopy of the Mn4Ca Complex of Photosynthesis Reveals Three Manganese-Centered Oxidation Steps and Suggests a Coordination Change Prior to O-2 Formation

In oxygenic photosynthesis, water is oxidized and dioxygen is produced at a Mn4Ca complex bound to the proteins of photosystem II (PSII). Valence and coordination changes in its catalytic S-state cycle are of great interest. In room-temperature (in situ) experiments, time-resolved energy-sampling X-...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 55; no. 30; p. 4197
Main Authors Zaharieva, Ivelina, Chernev, Petko, Berggren, Gustav, Anderlund, Magnus, Styring, Stenbjörn, Dau, Holger, Haumann, Michael
Format Journal Article
LanguageEnglish
Published 02.08.2016
Online AccessGet full text

Cover

Loading…
More Information
Summary:In oxygenic photosynthesis, water is oxidized and dioxygen is produced at a Mn4Ca complex bound to the proteins of photosystem II (PSII). Valence and coordination changes in its catalytic S-state cycle are of great interest. In room-temperature (in situ) experiments, time-resolved energy-sampling X-ray emission spectroscopy of the Mn K beta(1,3) line after laser-flash excitation of PSII membrane particles was applied to characterize the redox transitions in the S-state cycle. The K beta(1,3) line energies suggest a high-valence configuration of the Mn4Ca complex with Mn(III)(3)Mn(IV) in S-0, Mn(III)(2)Mn(IV)(2) in S-1, Mn(III)Mn(IV)(3) in S-2, and Mn(IV)(4) in S-3 and, thus, manganese oxidation in each of the three accessible oxidizing transitions of the water-oxidizing complex There are no indications of formation of a ligand radical, thus rendering partial water oxidation before reaching the S-4 state unlikely. The difference spectra of both manganese K beta(1,3) emission and K-edge X-ray absorption display different shapes for Mn(III) oxidation in the S-2 -> S-3 transition when compared to Mn(III) oxidation in the S-1 -> S-2 transition. Comparison to spectra of manganese compounds with known structures and oxidation states and varying metal coordination environments suggests a change in the manganese ligand environment in the S-2 -> S-3 transition, which could be oxidation of five-coordinated Mn(III) to six-coordinated Mn(IV). Conceivable options for the rearrangement of (substrate) water species and metal ligand bonding patterns at the Mn4Ca complex in the S-2 -> S-3 transition are discussed.
ISSN:1520-4995
0006-2960
DOI:10.1021/acs.biochem.6b00491