Concentration of defects responsible for persistent photoconductivity in Cu (In,Ga)Se-2 Dependence on material composition
Persistent photoconductivity (PPC) in thin Cu(In,Ga)Se-2 films is discussed within a model of relaxing defects acting as donors or acceptors depending on their configurational and charge state. The aim of this work is to identify the factors related to technological processes which affect the magnit...
Saved in:
Published in | Thin solid films Vol. 669; p. 600 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Persistent photoconductivity (PPC) in thin Cu(In,Ga)Se-2 films is discussed within a model of relaxing defects acting as donors or acceptors depending on their configurational and charge state. The aim of this work is to identify the factors related to technological processes which affect the magnitude of PPC. We established a method of evaluation of the concentration of metastable defects in thin Cu(In,Ga)Se-2 films relating it to the position of the Fermi level in thermodynamic equilibrium and used it to compare and discuss the impact of preparation details on the PPC value. The main result is that deviation from Cu/(Ga + In) stoichiometry does not change the concentration of metastable defects. Post deposition annealing in selenium affects the PPC depending on the presence of sodium during the treatment, while the impact of sodium itself on the metastable defect concentration apparently depends on whether it is present during the Cu(In,Ga)Se-2 deposition process or whether it is supplied during post-deposition treatment. |
---|---|
ISSN: | 1879-2731 0040-6090 |
DOI: | 10.1016/j.tsf.2018.11.038 |