On Algorithms to Find p-ordering

The concept of p-ordering for a prime p was introduced by Manjul Bhargava (in his PhD thesis) to develop a generalized factorial function over an arbitrary subset of integers. This notion of p-ordering provides a representation of polynomials modulo prime powers, and has been used to prove propertie...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms and Discrete Applied Mathematics pp. 333 - 345
Main Authors Gulati, Aditya, Chakrabarti, Sayak, Mittal, Rajat
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The concept of p-ordering for a prime p was introduced by Manjul Bhargava (in his PhD thesis) to develop a generalized factorial function over an arbitrary subset of integers. This notion of p-ordering provides a representation of polynomials modulo prime powers, and has been used to prove properties of roots sets modulo prime powers. We focus on the complexity of finding a p-ordering given a prime p, an exponent k and a subset of integers modulo pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^k$$\end{document}. Our first algorithm gives a p-ordering for a set of size n in time O~(nklogp)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{\mathcal {O}}(nk\log p)$$\end{document}, where set is considered modulo pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^k$$\end{document}. The subsets modulo pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^k$$\end{document} can be represented concisely using the notion of representative roots (Panayi, PhD Thesis, 1995; Dwivedi et al., ISSAC, 2019); a natural question is, can we find a p-ordering more efficiently given this succinct representation. Our second algorithm achieves precisely that, we give a p-ordering in time O~(d2klogp+nklogp+nd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{\mathcal {O}}(d^2k\log p + nk \log p + nd)$$\end{document}, where d is the size of the succinct representation and n is the required length of the p-ordering. Another contribution is to compute the structure of roots sets for prime powers pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^k$$\end{document}, when k is small. The number of root sets have been given before (Dearden and Metzger, Eur. J. Comb., 1997; Maulick, J. Comb. Theory, Ser. A, 2001), we explicitly describe all the root sets for k≤4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\le 4$$\end{document}.
Bibliography:The full version is available at https://arxiv.org/abs/2011.10978.
ISBN:3030678989
9783030678982
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-67899-9_27