Computer Aided Diagnosis Using Multilevel Image Features on Large-Scale Evaluation

Computer aided diagnosis (CAD) of cancerous anatomical structures via 3D medical images has emerged as an intensively studied research area. In this paper, we present a principled three-tiered image feature learning approach to capture task specific and data-driven class discriminative statistics fr...

Full description

Saved in:
Bibliographic Details
Published inMedical Computer Vision. Large Data in Medical Imaging pp. 161 - 174
Main Authors Lu, Le, Devarakota, Pandu, Vikal, Siddharth, Wu, Dijia, Zheng, Yefeng, Wolf, Matthias
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 2014
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783319055299
3319055291
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-05530-5_16

Cover

More Information
Summary:Computer aided diagnosis (CAD) of cancerous anatomical structures via 3D medical images has emerged as an intensively studied research area. In this paper, we present a principled three-tiered image feature learning approach to capture task specific and data-driven class discriminative statistics from an annotated image database. It integrates voxel-, instance-, and database-level feature learning, aggregation and parsing. The initial segmentation is proceeded as robust voxel labeling and thresholding. After instance-level spatial aggregation, extracted features can also be flexibly tuned for classifying lesions, or discriminating different subcategories of lesions. We demonstrate the effectiveness in the lung nodule detection task which handles all types of solid, partial-solid, and ground-glass nodules using the same set of learned features. Our hierarchical feature learning framework, which was extensively trained and validated on large-scale multiple site datasets of $$879$$ CT volumes (510 training and 369 validation), achieves superior performance than other state-of-the-art CAD systems. The proposed method is also shown to be applicable for colonic polyp detection, including all polyp morphological subcategories, via 770 tagged-prep CT scans from multiple medical sites (358 training and 412 validation).
Bibliography:Original Abstract: Computer aided diagnosis (CAD) of cancerous anatomical structures via 3D medical images has emerged as an intensively studied research area. In this paper, we present a principled three-tiered image feature learning approach to capture task specific and data-driven class discriminative statistics from an annotated image database. It integrates voxel-, instance-, and database-level feature learning, aggregation and parsing. The initial segmentation is proceeded as robust voxel labeling and thresholding. After instance-level spatial aggregation, extracted features can also be flexibly tuned for classifying lesions, or discriminating different subcategories of lesions. We demonstrate the effectiveness in the lung nodule detection task which handles all types of solid, partial-solid, and ground-glass nodules using the same set of learned features. Our hierarchical feature learning framework, which was extensively trained and validated on large-scale multiple site datasets of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$879$$\end{document} CT volumes (510 training and 369 validation), achieves superior performance than other state-of-the-art CAD systems. The proposed method is also shown to be applicable for colonic polyp detection, including all polyp morphological subcategories, via 770 tagged-prep CT scans from multiple medical sites (358 training and 412 validation).
ISBN:9783319055299
3319055291
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-05530-5_16