Local Phase-Based Fast Ray Features for Automatic Left Ventricle Apical View Detection in 3D Echocardiography

3D echocardiography is an imaging modality that enables a more complete and rapid cardiac function assessment. However, as a time-consuming procedure, it calls upon automatic view detection to enable fast 3D volume navigation and analysis. We propose a combinatorial model- and machine learning-based...

Full description

Saved in:
Bibliographic Details
Published inMedical Computer Vision. Large Data in Medical Imaging pp. 119 - 129
Main Authors Domingos, João S., Lima, Eduardo, Leeson, Paul, Noble, J. Alison
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 2014
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783319055299
3319055291
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-05530-5_12

Cover

More Information
Summary:3D echocardiography is an imaging modality that enables a more complete and rapid cardiac function assessment. However, as a time-consuming procedure, it calls upon automatic view detection to enable fast 3D volume navigation and analysis. We propose a combinatorial model- and machine learning-based left ventricle (LV) apical view detection method consisting of three steps: first, multiscale local phase-based 3D boundary detection is used to fit a deformable model to the boundaries of the LV blood pool. After candidate slice extraction around the derived mid axis of the LV segmentation, we propose the use of local phase-based Fast Ray features to complement conventional Haar features in an AdaBoost-based framework for automated standardized LV apical view detection. Evaluation performed on a combination of healthy volunteers and clinical patients with different image quality and ultrasound probes show that apical plane views can be accurately identified in a 360 degree swipe of 3D frames.
ISBN:9783319055299
3319055291
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-05530-5_12