Sound Recognition in Mixtures
In this paper, we describe a method for recognizing sound sources in a mixture. While many audio-based content analysis methods focus on detecting or classifying target sounds in a discriminative manner, we approach this as a regression problem, in which we estimate the relative proportions of sound...
Saved in:
Published in | Latent Variable Analysis and Signal Separation pp. 405 - 413 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2012
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we describe a method for recognizing sound sources in a mixture. While many audio-based content analysis methods focus on detecting or classifying target sounds in a discriminative manner, we approach this as a regression problem, in which we estimate the relative proportions of sound sources in the given mixture. Using source separation ideas based on probabilistic latent component analysis, we directly estimate these proportions from the mixture without actually separating the sources. We also introduce a method for learning a transition matrix to temporally constrain the problem. We demonstrate the proposed method on a mixture of five classes of sounds and show that it is quite effective in correctly estimating the relative proportions of the sounds in the mixture. |
---|---|
ISBN: | 9783642285509 3642285503 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-642-28551-6_50 |