Efficient and Robust Graphics Recognition from Historical Maps
Historical maps contain rich cartographic information, such as road networks, but this information is “locked” in images and inaccessible to a geographic information system (GIS). Manual map digitization requires intensive user effort and cannot handle a large number of maps. Previous approaches for...
Saved in:
Published in | Graphics Recognition. New Trends and Challenges pp. 25 - 35 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2013
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783642368233 3642368239 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-642-36824-0_3 |
Cover
Abstract | Historical maps contain rich cartographic information, such as road networks, but this information is “locked” in images and inaccessible to a geographic information system (GIS). Manual map digitization requires intensive user effort and cannot handle a large number of maps. Previous approaches for automatic map processing generally require expert knowledge in order to fine-tune parameters of the applied graphics recognition techniques and thus are not readily usable for non-expert users. This paper presents an efficient and effective graphics recognition technique that employs interactive user intervention procedures for processing historical raster maps with limited graphical quality. The interactive procedures are performed on color-segmented preprocessing results and are based on straightforward user training processes, which minimize the required user effort for map digitization. This graphics recognition technique eliminates the need for expert users in digitizing map images and provides opportunities to derive unique data for spatiotemporal research by facilitating time-consuming map digitization efforts. The described technique generated accurate road vector data from a historical map image and reduced the time for manual map digitization by 38%. |
---|---|
AbstractList | Historical maps contain rich cartographic information, such as road networks, but this information is “locked” in images and inaccessible to a geographic information system (GIS). Manual map digitization requires intensive user effort and cannot handle a large number of maps. Previous approaches for automatic map processing generally require expert knowledge in order to fine-tune parameters of the applied graphics recognition techniques and thus are not readily usable for non-expert users. This paper presents an efficient and effective graphics recognition technique that employs interactive user intervention procedures for processing historical raster maps with limited graphical quality. The interactive procedures are performed on color-segmented preprocessing results and are based on straightforward user training processes, which minimize the required user effort for map digitization. This graphics recognition technique eliminates the need for expert users in digitizing map images and provides opportunities to derive unique data for spatiotemporal research by facilitating time-consuming map digitization efforts. The described technique generated accurate road vector data from a historical map image and reduced the time for manual map digitization by 38%. |
Author | Knoblock, Craig A. Leyk, Stefan Chiang, Yao-Yi |
Author_xml | – sequence: 1 givenname: Yao-Yi surname: Chiang fullname: Chiang, Yao-Yi email: yaoyichi@isi.edu organization: Information Sciences Institute and Spatial Sciences Institute, University of Southern California, Marina del Rey, USA – sequence: 2 givenname: Stefan surname: Leyk fullname: Leyk, Stefan email: stefan.leyk@colorado.edu organization: Department of Geography, University of Colorado, Boulder, USA – sequence: 3 givenname: Craig A. surname: Knoblock fullname: Knoblock, Craig A. email: knoblock@isi.edu organization: Department of Computer Science and Information Sciences Institute, University of Southern California, Marina del Rey, USA |
BookMark | eNpVkMFKAzEURaNWsNZ-gZv8QPS9vMxkZiNIqa1QEYquQyaTqdGalMn4_47VjXdz4Tx4cM8lm8QUPWPXCDcIoG9rXQkSpZKCykoqAYZO2HykNLIjglM2xRJREKn67N-NaMKmQCBFrRVdsHnO7zCm0lApOWV3y64LLvg4cBtbvk3NVx74qreHt-Ay33qXdjEMIUXe9emTr0MeUh-c3fMne8hX7Lyz--znfz1jrw_Ll8VabJ5Xj4v7jciIkkTTNkXraygk1kCqLKxTaL20hLbQdedr26EHrR1J7ysH0raqkdJq64sWNc0Y_v7Nhz7Ene9Nk9JHNgjmx5EZFxsy42ZzFGJGR_QNa2xWJg |
ContentType | Book Chapter |
Copyright | Springer-Verlag Berlin Heidelberg 2013 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2013 |
DOI | 10.1007/978-3-642-36824-0_3 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9783642368240 3642368247 |
EISSN | 1611-3349 |
Editor | Kwon, Young-Bin Ogier, Jean-Marc |
Editor_xml | – sequence: 1 givenname: Young-Bin surname: Kwon fullname: Kwon, Young-Bin email: ybkwon@cau.ac.kr – sequence: 2 givenname: Jean-Marc surname: Ogier fullname: Ogier, Jean-Marc email: jean-marc.ogier@univ-lr.fr |
EndPage | 35 |
GroupedDBID | -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE ALMA_UNASSIGNED_HOLDINGS EJD F5P FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-s1123-bdb5de90521903465ac41ae2a31a579fe9af1e077c32ee8c02ad4b22a7ae5d173 |
ISBN | 9783642368233 3642368239 |
ISSN | 0302-9743 |
IngestDate | Wed Sep 17 02:33:15 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1123-bdb5de90521903465ac41ae2a31a579fe9af1e077c32ee8c02ad4b22a7ae5d173 |
PageCount | 11 |
ParticipantIDs | springer_books_10_1007_978_3_642_36824_0_3 |
PublicationCentury | 2000 |
PublicationDate | 2013 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – year: 2013 text: 2013 |
PublicationDecade | 2010 |
PublicationPlace | Berlin, Heidelberg |
PublicationPlace_xml | – name: Berlin, Heidelberg |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSubtitle | 9th International Workshop, GREC 2011, Seoul, Korea, September 15-16, 2011, Revised Selected Papers |
PublicationTitle | Graphics Recognition. New Trends and Challenges |
PublicationYear | 2013 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Nierstrasz, Oscar Steffen, Bernhard Kittler, Josef Vardi, Moshe Y. Weikum, Gerhard Sudan, Madhu Naor, Moni Mitchell, John C. Terzopoulos, Demetri Pandu Rangan, C. Kanade, Takeo Hutchison, David Tygar, Doug |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, Lancaster, UK – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, UK – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: ETH Zurich, Zurich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford University, Stanford, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: Oscar surname: Nierstrasz fullname: Nierstrasz, Oscar organization: University of Bern, Bern, Switzerland – sequence: 9 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Indian Institute of Technology, Madras, India – sequence: 10 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: University of Dortmund, Dortmund, Germany – sequence: 11 givenname: Madhu surname: Sudan fullname: Sudan, Madhu organization: Massachusetts Institute of Technology, USA – sequence: 12 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: University of California, Los Angeles, USA – sequence: 13 givenname: Doug surname: Tygar fullname: Tygar, Doug organization: University of California, Berkeley, USA – sequence: 14 givenname: Moshe Y. surname: Vardi fullname: Vardi, Moshe Y. organization: Rice University, Houston, USA – sequence: 15 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard organization: Max-Planck Institute of Computer Science, Saarbrücken, Germany |
SSID | ssj0000870842 ssj0002792 |
Score | 1.4835265 |
Snippet | Historical maps contain rich cartographic information, such as road networks, but this information is “locked” in images and inaccessible to a geographic... |
SourceID | springer |
SourceType | Publisher |
StartPage | 25 |
SubjectTerms | Color image segmentation historical raster maps image cleaning road vectorization |
Title | Efficient and Robust Graphics Recognition from Historical Maps |
URI | http://link.springer.com/10.1007/978-3-642-36824-0_3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZK97LaA7AP7fKSD3vaKiiN49i5IKGqCJWFA4IVnCI7cXYrVg0i6QF-PTNxnKSAkOAStaMq48znTsbjmc-E_GRS5kqrDBAQsECJGPjBDL7KjIeZyJVJa7b907Po-DKcXfGrweC-V7W0rPR--vBiX8l7UAUZ4Ipdsm9Atr0pCOAz4AtXQBiuT4Lf1TSrZetHqmnkWD53NUCgtq5XbOpcMSU-cWeltKHz5N-8SRFfq8K7nncVOfc3TdlX3s2Yk0Wh_zcuc3Kn5n9Hh_v9WTatGShcnfp5oZdlNXppZLaPpUdKcqpu7ZjQUqYE_XYz46yo6hqxkTtvwrmffn4Cz4pYyU-4_OToFfquupUE4rpIBpYVw3V0gbeG9Y4VGeugI6RdZJbm1Dld3nt9W_KTZy-Gfi0IqPJQV-j5CVsja0KGQ_LhcDr7_adNz_ngx2TYMZEhz6LdkLJDwjYhN-TYEjl1j9CyW1kC4ycan-2516HMxQb5hO0tFPtOwLibZGAWn8l6sxihja1LEDn7O9kXctCiTQFtatGmDm3aQ5si2rRDmyLaX8nl0fRicuw15294JUThzNOZ5pmJsb079lkYcZWGY2UCxcaKizg3scrHxhciZYExMvUDlYU6CJRQhmdjwb6R4aJYmO-EGqml4YEvkQsoiIzkXGgdM7i5gvgo_0F-OZsk-I8qE0enDQZMWAIGTGoDJmDArbf8eJt87GblDhlWd0uzC3FkpfcazB8B8oBpOw |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Graphics+Recognition.+New+Trends+and+Challenges&rft.au=Chiang%2C+Yao-Yi&rft.au=Leyk%2C+Stefan&rft.au=Knoblock%2C+Craig+A.&rft.atitle=Efficient+and+Robust+Graphics+Recognition+from+Historical+Maps&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2013-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783642368233&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=25&rft.epage=35&rft_id=info:doi/10.1007%2F978-3-642-36824-0_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon |