Efficient and Robust Graphics Recognition from Historical Maps

Historical maps contain rich cartographic information, such as road networks, but this information is “locked” in images and inaccessible to a geographic information system (GIS). Manual map digitization requires intensive user effort and cannot handle a large number of maps. Previous approaches for...

Full description

Saved in:
Bibliographic Details
Published inGraphics Recognition. New Trends and Challenges pp. 25 - 35
Main Authors Chiang, Yao-Yi, Leyk, Stefan, Knoblock, Craig A.
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2013
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783642368233
3642368239
ISSN0302-9743
1611-3349
DOI10.1007/978-3-642-36824-0_3

Cover

Abstract Historical maps contain rich cartographic information, such as road networks, but this information is “locked” in images and inaccessible to a geographic information system (GIS). Manual map digitization requires intensive user effort and cannot handle a large number of maps. Previous approaches for automatic map processing generally require expert knowledge in order to fine-tune parameters of the applied graphics recognition techniques and thus are not readily usable for non-expert users. This paper presents an efficient and effective graphics recognition technique that employs interactive user intervention procedures for processing historical raster maps with limited graphical quality. The interactive procedures are performed on color-segmented preprocessing results and are based on straightforward user training processes, which minimize the required user effort for map digitization. This graphics recognition technique eliminates the need for expert users in digitizing map images and provides opportunities to derive unique data for spatiotemporal research by facilitating time-consuming map digitization efforts. The described technique generated accurate road vector data from a historical map image and reduced the time for manual map digitization by 38%.
AbstractList Historical maps contain rich cartographic information, such as road networks, but this information is “locked” in images and inaccessible to a geographic information system (GIS). Manual map digitization requires intensive user effort and cannot handle a large number of maps. Previous approaches for automatic map processing generally require expert knowledge in order to fine-tune parameters of the applied graphics recognition techniques and thus are not readily usable for non-expert users. This paper presents an efficient and effective graphics recognition technique that employs interactive user intervention procedures for processing historical raster maps with limited graphical quality. The interactive procedures are performed on color-segmented preprocessing results and are based on straightforward user training processes, which minimize the required user effort for map digitization. This graphics recognition technique eliminates the need for expert users in digitizing map images and provides opportunities to derive unique data for spatiotemporal research by facilitating time-consuming map digitization efforts. The described technique generated accurate road vector data from a historical map image and reduced the time for manual map digitization by 38%.
Author Knoblock, Craig A.
Leyk, Stefan
Chiang, Yao-Yi
Author_xml – sequence: 1
  givenname: Yao-Yi
  surname: Chiang
  fullname: Chiang, Yao-Yi
  email: yaoyichi@isi.edu
  organization: Information Sciences Institute and Spatial Sciences Institute, University of Southern California, Marina del Rey, USA
– sequence: 2
  givenname: Stefan
  surname: Leyk
  fullname: Leyk, Stefan
  email: stefan.leyk@colorado.edu
  organization: Department of Geography, University of Colorado, Boulder, USA
– sequence: 3
  givenname: Craig A.
  surname: Knoblock
  fullname: Knoblock, Craig A.
  email: knoblock@isi.edu
  organization: Department of Computer Science and Information Sciences Institute, University of Southern California, Marina del Rey, USA
BookMark eNpVkMFKAzEURaNWsNZ-gZv8QPS9vMxkZiNIqa1QEYquQyaTqdGalMn4_47VjXdz4Tx4cM8lm8QUPWPXCDcIoG9rXQkSpZKCykoqAYZO2HykNLIjglM2xRJREKn67N-NaMKmQCBFrRVdsHnO7zCm0lApOWV3y64LLvg4cBtbvk3NVx74qreHt-Ay33qXdjEMIUXe9emTr0MeUh-c3fMne8hX7Lyz--znfz1jrw_Ll8VabJ5Xj4v7jciIkkTTNkXraygk1kCqLKxTaL20hLbQdedr26EHrR1J7ysH0raqkdJq64sWNc0Y_v7Nhz7Ene9Nk9JHNgjmx5EZFxsy42ZzFGJGR_QNa2xWJg
ContentType Book Chapter
Copyright Springer-Verlag Berlin Heidelberg 2013
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2013
DOI 10.1007/978-3-642-36824-0_3
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9783642368240
3642368247
EISSN 1611-3349
Editor Kwon, Young-Bin
Ogier, Jean-Marc
Editor_xml – sequence: 1
  givenname: Young-Bin
  surname: Kwon
  fullname: Kwon, Young-Bin
  email: ybkwon@cau.ac.kr
– sequence: 2
  givenname: Jean-Marc
  surname: Ogier
  fullname: Ogier, Jean-Marc
  email: jean-marc.ogier@univ-lr.fr
EndPage 35
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-s1123-bdb5de90521903465ac41ae2a31a579fe9af1e077c32ee8c02ad4b22a7ae5d173
ISBN 9783642368233
3642368239
ISSN 0302-9743
IngestDate Wed Sep 17 02:33:15 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1123-bdb5de90521903465ac41ae2a31a579fe9af1e077c32ee8c02ad4b22a7ae5d173
PageCount 11
ParticipantIDs springer_books_10_1007_978_3_642_36824_0_3
PublicationCentury 2000
PublicationDate 2013
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013
PublicationDecade 2010
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSubtitle 9th International Workshop, GREC 2011, Seoul, Korea, September 15-16, 2011, Revised Selected Papers
PublicationTitle Graphics Recognition. New Trends and Challenges
PublicationYear 2013
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Nierstrasz, Oscar
Steffen, Bernhard
Kittler, Josef
Vardi, Moshe Y.
Weikum, Gerhard
Sudan, Madhu
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: Oscar
  surname: Nierstrasz
  fullname: Nierstrasz, Oscar
  organization: University of Bern, Bern, Switzerland
– sequence: 9
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology, Madras, India
– sequence: 10
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: University of Dortmund, Dortmund, Germany
– sequence: 11
  givenname: Madhu
  surname: Sudan
  fullname: Sudan, Madhu
  organization: Massachusetts Institute of Technology, USA
– sequence: 12
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 13
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 14
  givenname: Moshe Y.
  surname: Vardi
  fullname: Vardi, Moshe Y.
  organization: Rice University, Houston, USA
– sequence: 15
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max-Planck Institute of Computer Science, Saarbrücken, Germany
SSID ssj0000870842
ssj0002792
Score 1.4835265
Snippet Historical maps contain rich cartographic information, such as road networks, but this information is “locked” in images and inaccessible to a geographic...
SourceID springer
SourceType Publisher
StartPage 25
SubjectTerms Color image segmentation
historical raster maps
image cleaning
road vectorization
Title Efficient and Robust Graphics Recognition from Historical Maps
URI http://link.springer.com/10.1007/978-3-642-36824-0_3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZK97LaA7AP7fKSD3vaKiiN49i5IKGqCJWFA4IVnCI7cXYrVg0i6QF-PTNxnKSAkOAStaMq48znTsbjmc-E_GRS5kqrDBAQsECJGPjBDL7KjIeZyJVJa7b907Po-DKcXfGrweC-V7W0rPR--vBiX8l7UAUZ4Ipdsm9Atr0pCOAz4AtXQBiuT4Lf1TSrZetHqmnkWD53NUCgtq5XbOpcMSU-cWeltKHz5N-8SRFfq8K7nncVOfc3TdlX3s2Yk0Wh_zcuc3Kn5n9Hh_v9WTatGShcnfp5oZdlNXppZLaPpUdKcqpu7ZjQUqYE_XYz46yo6hqxkTtvwrmffn4Cz4pYyU-4_OToFfquupUE4rpIBpYVw3V0gbeG9Y4VGeugI6RdZJbm1Dld3nt9W_KTZy-Gfi0IqPJQV-j5CVsja0KGQ_LhcDr7_adNz_ngx2TYMZEhz6LdkLJDwjYhN-TYEjl1j9CyW1kC4ycan-2516HMxQb5hO0tFPtOwLibZGAWn8l6sxihja1LEDn7O9kXctCiTQFtatGmDm3aQ5si2rRDmyLaX8nl0fRicuw15294JUThzNOZ5pmJsb079lkYcZWGY2UCxcaKizg3scrHxhciZYExMvUDlYU6CJRQhmdjwb6R4aJYmO-EGqml4YEvkQsoiIzkXGgdM7i5gvgo_0F-OZsk-I8qE0enDQZMWAIGTGoDJmDArbf8eJt87GblDhlWd0uzC3FkpfcazB8B8oBpOw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Graphics+Recognition.+New+Trends+and+Challenges&rft.au=Chiang%2C+Yao-Yi&rft.au=Leyk%2C+Stefan&rft.au=Knoblock%2C+Craig+A.&rft.atitle=Efficient+and+Robust+Graphics+Recognition+from+Historical+Maps&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2013-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783642368233&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=25&rft.epage=35&rft_id=info:doi/10.1007%2F978-3-642-36824-0_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon