岷江上游汶川地震前后泥石流易发性评价
P642.23; 科学准确地绘制泥石流易发性区划图以及确定主控因子及其贡献率,是区域泥石流预警预报和风险管理的重要基础.文章以岷江上游为研究区,以小流域为评价单元,分别采用了 5种机器学习模型构建了泥石流易发性评价模型,对汶川大地震前、后岷江上游泥石流易发性和评价因子贡献率进行了定量分析.结果表明:(1)集成机器学习模型的预测精度及受试者工作特征曲线下面积值均高于浅层机器学习模型,其中随机森林模型在地震前、后泥石流易发性评价中表现最优;(2)震前、震后泥石流发生率均随易发性等级的提高逐渐增大,且等级越高增量越大,各等级震后泥石流发生率均高于震前;(3)地震前、后侵蚀传递系数的贡献率均显著高于其...
Saved in:
Published in | 中国地质灾害与防治学报 Vol. 35; no. 1; pp. 51 - 59 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
西南科技大学土木工程与建筑学院,四川绵阳 621010
2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1003-8035 |
DOI | 10.16031/j.cnki.issn.1003-8035.202306035 |
Cover
Abstract | P642.23; 科学准确地绘制泥石流易发性区划图以及确定主控因子及其贡献率,是区域泥石流预警预报和风险管理的重要基础.文章以岷江上游为研究区,以小流域为评价单元,分别采用了 5种机器学习模型构建了泥石流易发性评价模型,对汶川大地震前、后岷江上游泥石流易发性和评价因子贡献率进行了定量分析.结果表明:(1)集成机器学习模型的预测精度及受试者工作特征曲线下面积值均高于浅层机器学习模型,其中随机森林模型在地震前、后泥石流易发性评价中表现最优;(2)震前、震后泥石流发生率均随易发性等级的提高逐渐增大,且等级越高增量越大,各等级震后泥石流发生率均高于震前;(3)地震前、后侵蚀传递系数的贡献率均显著高于其他因子,与汶川大地震地震烈度空间分布特征叠加,加大了震后干流和支流泥石流由下游向上游发育程度逐渐降低的空间分布规律. |
---|---|
AbstractList | P642.23; 科学准确地绘制泥石流易发性区划图以及确定主控因子及其贡献率,是区域泥石流预警预报和风险管理的重要基础.文章以岷江上游为研究区,以小流域为评价单元,分别采用了 5种机器学习模型构建了泥石流易发性评价模型,对汶川大地震前、后岷江上游泥石流易发性和评价因子贡献率进行了定量分析.结果表明:(1)集成机器学习模型的预测精度及受试者工作特征曲线下面积值均高于浅层机器学习模型,其中随机森林模型在地震前、后泥石流易发性评价中表现最优;(2)震前、震后泥石流发生率均随易发性等级的提高逐渐增大,且等级越高增量越大,各等级震后泥石流发生率均高于震前;(3)地震前、后侵蚀传递系数的贡献率均显著高于其他因子,与汶川大地震地震烈度空间分布特征叠加,加大了震后干流和支流泥石流由下游向上游发育程度逐渐降低的空间分布规律. |
Abstract_FL | Accurately and scientifically mapping debris flow susceptibility and the determination of key controlling factors and their contribution rates are essential foundations for regional debris flow early warning,forecasting and risk management.The article takes the upper reaches of the Minjiang River as the research area,with small watersheds as evaluation units.Five different machine learning models were employed to construct evaluation models for the susceptibility of debris flows in the upper reaches of the Minjiang River.Quantitative analyses were conducted on the susceptibility of debris flows and the contribution rates of evaluation factors before and after the Wenchuan earthquake.The results indicate that:(1)Integrated machine learning models exhibit higher ACC and AUC values than the shallow machine learning models,with the random forest model performing the best in the assessment of debris flow susceptibility before and after the earthquake;(2)The occurrence rate of debris flow before and after the earthquakes gradually increases with the rise in susceptibility level,and the increment increases with the increase of the level.The occurrence rate of debris flow at all levels is higher after the earthquake than before;(3)The contribution rate of the erosion transmission coefficients before and after the earthquake is significantly higher than that of other factors.This contribution is compounded by the spatial distribution characteristics of the Wenchuan earthquake intensity,further accentuating the spatial distribution pattern of decreasing debris flow development from downstream to upstream in both the main and tributaries following the earthquake. |
Author | 田述军 侯鹏鹂 赵佳忆 李凯 |
AuthorAffiliation | 西南科技大学土木工程与建筑学院,四川绵阳 621010 |
AuthorAffiliation_xml | – name: 西南科技大学土木工程与建筑学院,四川绵阳 621010 |
Author_FL | TIAN Shujun HOU Pengli LI Kai ZHAO Jiayi |
Author_FL_xml | – sequence: 1 fullname: ZHAO Jiayi – sequence: 2 fullname: TIAN Shujun – sequence: 3 fullname: LI Kai – sequence: 4 fullname: HOU Pengli |
Author_xml | – sequence: 1 fullname: 赵佳忆 – sequence: 2 fullname: 田述军 – sequence: 3 fullname: 李凯 – sequence: 4 fullname: 侯鹏鹂 |
BookMark | eNo9j81Kw0AUhWdRwVr7Hi5MvDN3Mk2WUvyDgpvuS2aSqa0yBYOoWSkIomBV3LiodCUutRZNwNdpRn0LA4qrA-fA-fgWSMUMTEzIEgWXCkC60neV2e25vSQxLgVAxwf0XAYMody9Cqn-t_OkniQ9CSg4cmSsSkTxmtnJeJZf2jy3k_cieyhGL9-j8-LiqrgZ2unj53hq307t_V1xfWtPnr6ez2Yf2SKZ0-FeEtf_skba62vt5qbT2t7Yaq62nIRCw3MiIYOIKiEkNmLB_IDHPoa6pAvgodaRjKRUsQYOcYAeo1JSxST6SnElIqyR5d_bw9Do0HQ7_cHBvimBnbQbpenOsU6PZGnKoVT08Affz2QB |
ClassificationCodes | P642.23 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.16031/j.cnki.issn.1003-8035.202306035 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Susceptibility assessment of debris flow in the upper reaches of the Minjiang River before and after the Wenchuan earthquake |
EndPage | 59 |
ExternalDocumentID | zgdzzhyfzxb202401005 |
GrantInformation_xml | – fundername: (国家自然科学基金); (国家自然科学基金) funderid: (国家自然科学基金); (国家自然科学基金) |
GroupedDBID | 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ PSX TCJ |
ID | FETCH-LOGICAL-s1075-d6b9d1c66b37e62894e83af643604affdbdbbcef040e93521bb1c2b38cc4c6d3 |
ISSN | 1003-8035 |
IngestDate | Thu May 29 04:07:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 易发性 岷江上游 susceptibility 泥石流 机器学习 the Wenchuan earthquake debris flow upper reaches of the Minjiang River 汶川大地震 machine learning |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1075-d6b9d1c66b37e62894e83af643604affdbdbbcef040e93521bb1c2b38cc4c6d3 |
PageCount | 9 |
ParticipantIDs | wanfang_journals_zgdzzhyfzxb202401005 |
PublicationCentury | 2000 |
PublicationDate | 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024 |
PublicationDecade | 2020 |
PublicationTitle | 中国地质灾害与防治学报 |
PublicationTitle_FL | The Chinese Journal of Geological Hazard and Control |
PublicationYear | 2024 |
Publisher | 西南科技大学土木工程与建筑学院,四川绵阳 621010 |
Publisher_xml | – name: 西南科技大学土木工程与建筑学院,四川绵阳 621010 |
SSID | ssib036434322 ssj0002925265 ssib000271184 ssib051368647 ssib006568360 ssib000502065 ssib002258245 ssib000862046 |
Score | 2.339876 |
Snippet | P642.23; 科学准确地绘制泥石流易发性区划图以及确定主控因子及其贡献率,是区域泥石流预警预报和风险管理的重要基础.文章以岷江上游为研究区,以小流域为评价单元,分别采用了... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 51 |
Title | 岷江上游汶川地震前后泥石流易发性评价 |
URI | https://d.wanfangdata.com.cn/periodical/zgdzzhyfzxb202401005 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANNQK4kUUFb_pwQFBdk0mmcnMcdLNUgQ9rdBb2clHK8IKdgu6JwVBFPzCi4dKT-JRa9EW_CP-gG7Uf-F7L8luigWrEMLLfLzPJO_NZPLGcS4neaJVlttWDt60FchMtmwfAjlX8kwKK0RKWyfcuCkXbgXXF8XizKHvjVVLa0PbTkb7_lfyP1aFMrAr_iX7D5adIIUCgMG-cAYLw_lANmaxYBFnUchiySKP6S6LAxYppgyVKDzKqkhS45DpDgJ6nkUuizUCKsQSpZkqq1ymYurlMyNYHCJagLEEmnkIaMW0T726TFOJcpkBPIqZLlMBsREBuWbsW_FmSipQ2-QEWA2YUUgOSEQxVpmY6JYSxcStQnmRE474sU2HGUkMGOC2vn0In8ADe3cIDVwCa3LaBAQLatpdAkAekC2aNpGoLkXMgJZMd1oTII8gKzAVaVRDBfDmNAqfTqCSaogFxNVhOkQGQGWV-gxqEOUJSI8TwUhBaFeJACqIrFgaBi5V1FCQIKUbquoQ5gke0J1mhsMTVWlfR40bIqSOolaxf1XCGL1aCFx6LFxcqNwy50vt0qqr5qNb-qcquW8Z6ZSp2P_wobjvODnRZHDnNhFpT4i0OY1Za3J7M5WPltPRaOVBPrpvUcPAJiYXPszD0BONyY7qezeMbBuBrIBhy57Ei7hPQjORn1C88f0bRiGqkejOl_SD9CRQF54vVZ0oD2MyrjnuA0FLHypRjjhXammv_UVW-qFvkPcHy43Ys3fcOVYNGudM-QY44cyMVk46cvx5u9jc2N15VuzsFJtfx9vvxuuffq0_GT99Pn71oth6_2Njq_jyqHj7ZvzydfHww8-Pj3e_bZ9yet24N7_QqnZBaa16EM-3Uml16iVSWj_MJFc6yJTfz0Fi6Qb9PE9tam2S5eCNMw3DKc9aL-HWV0kSJDL1Tzuzg7uD7IwzB-450S6H1riJhgU0AQ80OGgJw8a-8M86rBJzqXrJrS7tZ9NzB2x33jmKcDlhecGZHd5byy5CCD-0l-hu-A0nwbDM |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%B2%B7%E6%B1%9F%E4%B8%8A%E6%B8%B8%E6%B1%B6%E5%B7%9D%E5%9C%B0%E9%9C%87%E5%89%8D%E5%90%8E%E6%B3%A5%E7%9F%B3%E6%B5%81%E6%98%93%E5%8F%91%E6%80%A7%E8%AF%84%E4%BB%B7&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%9C%B0%E8%B4%A8%E7%81%BE%E5%AE%B3%E4%B8%8E%E9%98%B2%E6%B2%BB%E5%AD%A6%E6%8A%A5&rft.au=%E8%B5%B5%E4%BD%B3%E5%BF%86&rft.au=%E7%94%B0%E8%BF%B0%E5%86%9B&rft.au=%E6%9D%8E%E5%87%AF&rft.au=%E4%BE%AF%E9%B9%8F%E9%B9%82&rft.date=2024&rft.pub=%E8%A5%BF%E5%8D%97%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E5%9C%9F%E6%9C%A8%E5%B7%A5%E7%A8%8B%E4%B8%8E%E5%BB%BA%E7%AD%91%E5%AD%A6%E9%99%A2%2C%E5%9B%9B%E5%B7%9D%E7%BB%B5%E9%98%B3+621010&rft.issn=1003-8035&rft.volume=35&rft.issue=1&rft.spage=51&rft.epage=59&rft_id=info:doi/10.16031%2Fj.cnki.issn.1003-8035.202306035&rft.externalDocID=zgdzzhyfzxb202401005 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgdzzhyfzxb%2Fzgdzzhyfzxb.jpg |